gpt_model.py 12.9 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GPT-2 model."""

from functools import partial
import torch

from megatron import get_args
from megatron import mpu
from megatron.enums import AttnMaskType
from .module import MegatronModule, fp32_to_float16

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .utils import init_method_normal
from .utils import scaled_init_method_normal

from deepspeed.pipe import PipelineModule, LayerSpec, TiedLayerSpec
from megatron.model.fused_layer_norm import MixedFusedLayerNorm as LayerNorm
from megatron.model.module import float16_to_fp32
from .language_model import EmbeddingPipe
from .transformer import ParallelTransformerLayerPipe


def post_language_model_processing(lm_output, labels, logit_weights,
                                   get_key_value, parallel_output,
                                   forward_method_parallel_output,
                                   fp16_lm_cross_entropy):
    if get_key_value:
        lm_output, presents = lm_output

    # Output.
    if forward_method_parallel_output is not None:
        parallel_output = forward_method_parallel_output
    output = parallel_lm_logits(
        lm_output,
        logit_weights,
        parallel_output)

    if get_key_value:
        output = [output, presents]

    if labels is None:
        return output
    else:
        if fp16_lm_cross_entropy:
            assert output.dtype == torch.half
            loss = mpu.vocab_parallel_cross_entropy(output, labels)
        else:
            loss = mpu.vocab_parallel_cross_entropy(output.float(), labels)
        return loss


class GPTModel(MegatronModule):
    """GPT-2 Language model."""

    def __init__(
        self,
        num_tokentypes=0,
        parallel_output=True,
        pre_process=True,
        post_process=True,
        prefix_lm=False,
    ):
        super(GPTModel, self).__init__()
        args = get_args()

        self.parallel_output = parallel_output
        self.pre_process = pre_process
        self.post_process = post_process
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy

        self.language_model, self._language_model_key = get_language_model(
            num_tokentypes=num_tokentypes,
            add_pooler=False,
            # TODO: Change naming of class from GPT to something that encapsulate prefix lm.
            encoder_attn_mask_type=AttnMaskType.prefix if prefix_lm else AttnMaskType.causal,
            init_method=init_method_normal(args.init_method_std),
            scaled_init_method=scaled_init_method_normal(args.init_method_std,
                                                         args.num_layers),
            pre_process=self.pre_process,
            post_process=self.post_process)

        self.initialize_word_embeddings(init_method_normal)

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        self.language_model.set_input_tensor(input_tensor)

    def forward(self, input_ids, position_ids, attention_mask, labels=None,
                tokentype_ids=None, layer_past=None, get_key_value=False,
                forward_method_parallel_output=None, curriculum_seqlen=None):
        if curriculum_seqlen is not None:
            args = get_args()
            args.curriculum_seqlen = curriculum_seqlen
            if curriculum_seqlen < input_ids.size()[1]:
                # seqlen-based curriculum learning
                # input_ids, position_ids, labels have size [batch size, seqlen]
                input_ids = input_ids[:, :curriculum_seqlen].contiguous()
                position_ids = position_ids[:, :curriculum_seqlen].contiguous()
                labels = labels[:, :curriculum_seqlen].contiguous()

                # attention_mask has size [1, 1, seqlen, seqlen]
                attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous()

        lm_output = self.language_model(
            input_ids,
            position_ids,
            attention_mask,
            layer_past=layer_past,
            get_key_value=get_key_value)

        if self.post_process:
            return post_language_model_processing(
                lm_output, labels,
                self.word_embeddings_weight(),
                get_key_value,
                self.parallel_output,
                forward_method_parallel_output,
                self.fp16_lm_cross_entropy)
        else:
            return lm_output

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
        # Save word_embeddings.
        if self.post_process and not self.pre_process:
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Load word_embeddings.
        if self.post_process and not self.pre_process:
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)
        if self._language_model_key in state_dict:
            state_dict = state_dict[self._language_model_key]
        self.language_model.load_state_dict(state_dict, strict=strict)


def get_cross_entropy(is_prefix: bool):
    def CrossEntropy(output, labels):
        labels, loss_mask = labels[0], labels[1]

        args = get_args()

        losses = mpu.vocab_parallel_cross_entropy(output.contiguous().float(), labels)

        if is_prefix:
            micro_batch_size, sequence_length = loss_mask.shape
            average_tokens_per_sample: torch.Tensor
            if args.loss_on_targets_only:
                # HACK: This is useful when we obtain loss masks that are microbatch dependent. Consequently, if we want to
                #   preserve the notion that all tokens have the same impact on the loss, we can only normalise using a
                #   microbatch independent value. It should be expected weight over a microbatch.
                #   Here we still use `sequence_length`, that's batch size dependent, in order to be backwards compatible with
                #   current experiment on vanilla gpt.
                if args.reweight_loss_based_on_position_frequency:
                    reweight = torch.arange(
                        sequence_length, 0, -1, dtype=torch.float, device=loss_mask.device
                    ) / (sequence_length + 1) * 2
                    average_tokens_per_sample = reweight.flip(-1).cumsum(-1).mean()
                else:
                    average_tokens_per_sample = (sequence_length + 1) / 2
            else:
                average_tokens_per_sample = sequence_length
            expected_number_of_tokens = average_tokens_per_sample * micro_batch_size
        else:
            expected_number_of_tokens = loss_mask.sum()

        loss_mask = loss_mask.view(-1)
        loss = torch.sum(losses.view(-1) * loss_mask) / expected_number_of_tokens
        return loss
    return CrossEntropy


class GPTModelPipe(PipelineModule,MegatronModule):
    """GPT-2 Language model."""

    def __init__(
        self,
        num_tokentypes=0,
        parallel_output=True,
        attn_mask_type: AttnMaskType = AttnMaskType.causal
    ):
        args = get_args()
        self.parallel_output = parallel_output

        init_method = init_method_normal(args.init_method_std)

        self.specs = []

        def _to_float16(inputs):
            if args.fp16:
                return fp32_to_float16(inputs, lambda v: v.half())
            elif args.bf16:
                return fp32_to_float16(inputs, lambda v: v.bfloat16())
            else:
                return inputs

        self.specs.append(_to_float16)

        # Embedding layer
        self.specs.append(TiedLayerSpec('embed',
                                        EmbeddingPipe,
                                        args.hidden_size,
                                        args.padded_vocab_size,
                                        args.hidden_dropout,
                                        init_method=init_method,
                                        num_tokentypes=num_tokentypes,
                                        tied_weight_attr='word_embeddings_weight'))

        if args.fp32_residual_connection:
            if getattr(args, 'pretrain_causal_attention', False):
                self.specs.append(lambda x: x.transpose(0, 1).contiguous().float())
            else:
                # EmbeddingPipe returns attention mask as well
                self.specs.append(lambda x: (x[0].transpose(0, 1).contiguous().float(), *x[1:]))
        else:
            if getattr(args, 'pretrain_causal_attention', False):
                self.specs.append(lambda x: x.transpose(0, 1).contiguous())
            else:
                # EmbeddingPipe returns attention mask as well
                self.specs.append(lambda x: (x[0].transpose(0, 1).contiguous(), *x[1:]))

        for layer_idx in range(args.num_layers):
            self.specs.append(
                LayerSpec(ParallelTransformerLayerPipe,
                    init_method=init_method,
                    output_layer_init_method=scaled_init_method_normal(args.init_method_std,
                                                                       args.num_layers),
                    layer_number=layer_idx,
                    # TODO: Change naming of class from GPT to something that encapsulate prefix lm.
                    self_attn_mask_type=attn_mask_type))

        # Undo data format change
        def undo(x):
            if not getattr(args, 'pretrain_causal_attention', False):
                x = x[0]
            return x.transpose(0, 1).contiguous()
        self.specs.append(undo)

        # Final layernorm after transformer layers
        self.specs.append(
            LayerSpec(LayerNorm,
                      args.hidden_size,
                      eps=args.layernorm_epsilon))

        def _logits_helper(embedding, lm_output):
            """A wrapper to massage inputs/outputs from pipeline. """
            return parallel_lm_logits(
                lm_output,
                embedding.word_embeddings_weight,
                self.parallel_output)

        self.specs.append(
            TiedLayerSpec('embed',
                          EmbeddingPipe,
                          args.hidden_size,
                          args.padded_vocab_size,
                          args.hidden_dropout,
                          init_method=init_method,
                          num_tokentypes=num_tokentypes,
                          forward_fn=_logits_helper,
                          tied_weight_attr='word_embeddings_weight')
        )

        # Convert to fp32 if needed
        if args.fp16 or args.bf16:
            self.specs.append(float16_to_fp32)

        if args.checkpoint_activations:
            interval = args.checkpoint_num_layers
        else:
            interval = 0

        from deepspeed.runtime.pipe.topology import PipeModelDataParallelTopology
        topo = PipeModelDataParallelTopology(num_pp=mpu.get_pipeline_model_parallel_world_size(),
                                             num_mp=mpu.get_tensor_model_parallel_world_size(),
                                             num_dp=mpu.get_data_parallel_world_size())

        # here one can extend the regex to include more layers to be counted towards partitioning,
        # e.g. 'type:transformer|embedding' will add up all the transformer blocks and also the first
        # and last embedding layers and then partition that transformers+2 layers - so to get a good
        # balance you may want to use less transformer layers
        #
        # caveat emptor: the current implementation of PP fails unless each stage has at least one
        # transformer layer
        if args.pp_partition_method is not None:
            partition_method = args.pp_partition_method
        else:
            partition_method = 'type:transformer'

        super().__init__(layers=self.specs,
                         loss_fn=get_cross_entropy(is_prefix=attn_mask_type is AttnMaskType.prefix),
                         topology=topo,
                         activation_checkpoint_interval=interval,
                         partition_method=partition_method)