decoder_packed_mtf_dataset.py 19.2 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import os
import time

import numpy as np
import torch

from megatron import print_rank_0, mpu, logging
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples, get_split_by_range_, \
    get_train_valid_test_split_
from megatron.data.mtf_dataset import MTFDataset
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset

logger = logging.get_logger(__name__)

def build_train_valid_test_datasets(
    data_prefix,
    data_impl,
    splits_string,
    seq_length: int,
    pad_token: int,
    eos_token: int,
    train_valid_test_num_samples,
    seed,
    skip_warmup
):
    """Build train, valid, and test datasets."""

    # Single dataset.
    if len(data_prefix) == 1:
        all_train_datasets, all_valid_datasets, all_test_datasets = _build_train_valid_test_datasets(
            data_prefix=data_prefix[0],
            data_impl=data_impl,
            splits_string=splits_string,
            seq_length=seq_length,
            pad_token=pad_token,
            eos_token=eos_token,
            train_valid_test_num_samples=train_valid_test_num_samples,
            seed=seed,
            skip_warmup=skip_warmup
        )
    # Blending dataset.
    else:

        output = get_datasets_weights_and_num_samples(data_prefix=data_prefix, train_valid_test_num_samples=train_valid_test_num_samples)
        prefixes, weights, datasets_train_valid_test_num_samples = output

        # Build individual datasets.
        train_datasets = []
        valid_datasets = []
        test_datasets = []
        for i in range(len(prefixes)):
            train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
                data_prefix=prefixes[i],
                data_impl=data_impl,
                splits_string=splits_string,
                seq_length=seq_length,
                pad_token=pad_token,
                eos_token=eos_token,
                train_valid_test_num_samples=datasets_train_valid_test_num_samples[i],
                seed=seed,
                skip_warmup=skip_warmup
            )
            if train_ds:
                train_datasets.append(train_ds)
            if valid_ds:
                valid_datasets.append(valid_ds)
            if test_ds:
                test_datasets.append(test_ds)

        all_train_datasets = BlendableDataset(train_datasets, weights) \
                            if train_datasets else None
        all_valid_datasets = BlendableDataset(valid_datasets, weights) \
                            if valid_datasets else None
        all_test_datasets = BlendableDataset(test_datasets, weights) \
                            if test_datasets else None

    return all_train_datasets, all_valid_datasets, all_test_datasets


def build_dataset_group(
    dataset_group_name,
    paths,
    weights,
    splits,
    data_impl,
    seq_length: int,
    pad_token: int,
    eos_token: int,
    train_valid_test_num_samples,
    seed,
    skip_warmup,
    train_valid_test
):
    '''
    Build a single dataset group corresponding to Option 2 of data loading see arguments.py
    a dataset group is passed in the following form
    GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2, WEIGHT2 START:END PATH2
    or alternatively
    GIVEN_NAME PATH1    # for a single dataset to be used fully
    '''

    assert train_valid_test in ["train","valid","test"]

    # Single dataset.
    if len(paths) == 1:
        dataset = _build_single_datasets(
            data_prefix=paths[0],
            range_string=splits[0],
            data_impl=data_impl,
            seq_length=seq_length,
            pad_token=pad_token,
            eos_token=eos_token,
            train_valid_test_num_samples=train_valid_test_num_samples,
            seed=seed,
            skip_warmup=skip_warmup,
            dataset_group_name=dataset_group_name,
            train_valid_test=train_valid_test
        )
        return dataset
    # Blending dataset.
    else:

        data_prefix = []
        # data_prefix is of the shape:
        # ["WEIGHT1", "PATH1", "WEIGHT2", "PATH2", "WEIGHT3", "PATH3"]
        for w,p in zip(weights, paths):
            data_prefix += [w,p]

        output = get_datasets_weights_and_num_samples(data_prefix,
                                                    train_valid_test_num_samples)
        prefixes, weights, datasets_train_valid_test_num_samples = output

        # Build individual datasets.
        datasets = []
        for i in range(len(prefixes)):
            ds = _build_single_datasets(
                data_prefix=prefixes[i],
                range_string=splits[i],
                data_impl=data_impl,
                seq_length=seq_length,
                pad_token=pad_token,
                eos_token=eos_token,
                train_valid_test_num_samples=datasets_train_valid_test_num_samples[i],
                seed=seed,
                skip_warmup=skip_warmup,
                dataset_group_name=dataset_group_name,
                train_valid_test=train_valid_test
            )

            datasets.append(ds)
        all_datasets = BlendableDataset(datasets, weights)

        return all_datasets

def _build_single_datasets(
    data_prefix,
    range_string,
    data_impl,
    seq_length: int,
    pad_token: int,
    eos_token: int,
    train_valid_test_num_samples,
    seed,
    skip_warmup,
    dataset_group_name,
    train_valid_test
):
    """Build a single dataset"""

    assert train_valid_test in ["train","valid","test"]
    index = ["train","valid","test"].index(train_valid_test)

    # Target indexed dataset.
    target_indexed_dataset = get_indexed_dataset(
        data_prefix=data_prefix,
        is_input=False,
        data_impl=data_impl,
        skip_warmup=skip_warmup
    )

    total_num_of_documents = target_indexed_dataset.sizes.shape[0]
    # this corresponds to option2 for data loading on the form
    # WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2, WEIGHT3 START:END PATH3
    # splits here is an array of size 2  [start_index, end_index]
    splits = get_split_by_range_(range_string=range_string, size=total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    print_rank_0('    {}:'.format(dataset_group_name))
    print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[0], splits[1],
                                        splits[1] - splits[0]))

    def build_dataset(name):
        dataset = None
        if splits[1] > splits[0]:
            documents = np.arange(start=splits[0], stop=splits[1],
                                  step=1, dtype=np.int32)
            dataset = DecoderPackedMTFDataset(
                name=name,
                data_prefix=data_prefix,
                data_impl=data_impl,
                skip_warmup=skip_warmup,
                documents=documents,
                seq_length=seq_length,
                pad_token=pad_token,
                eos_token=eos_token,
                num_samples=train_valid_test_num_samples[index],
                seed=seed
            )
        return dataset

    dataset = build_dataset(dataset_group_name)

    return dataset


def _build_train_valid_test_datasets(
    data_prefix,
    data_impl,
    splits_string,
    seq_length: int,
    pad_token: int,
    eos_token: int,
    train_valid_test_num_samples,
    seed,
    skip_warmup
):
    """Build train, valid, and test datasets."""

    # Target indexed dataset.
    target_indexed_dataset = get_indexed_dataset(data_prefix, is_input=False, data_impl=data_impl, skip_warmup=skip_warmup)

    total_num_of_documents = target_indexed_dataset.sizes.shape[0]
    # splits here is an array of size 4  [train_start_index, valid_start_index, test_start_index, test_end_index]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)
    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
            documents = np.arange(start=splits[index], stop=splits[index + 1],
                                  step=1, dtype=np.int32)
            dataset = DecoderPackedMTFDataset(
                name=name,
                data_prefix=data_prefix,
                data_impl=data_impl,
                skip_warmup=skip_warmup,
                documents=documents,
                seq_length=seq_length,
                pad_token=pad_token,
                eos_token=eos_token,
                num_samples=train_valid_test_num_samples[index],
                seed=seed
            )
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


class DecoderPackedMTFDataset(torch.utils.data.Dataset):

    def __init__(
        self,
        name,
        data_prefix,
        data_impl,
        skip_warmup,
        documents,
        num_samples,
        seq_length: int,
        pad_token: int,
        eos_token: int,
        seed,
    ):
        self.mtf_dataset = MTFDataset(name=name, data_prefix=data_prefix, data_impl=data_impl, skip_warmup=skip_warmup, documents=documents)

        self.pad_token = pad_token
        self.seq_length = seq_length

        self.sample_index, self.shuffle_index = _build_index_mappings(name=name, data_prefix=data_prefix, nb_documents=len(documents), mtf_dataset=self.mtf_dataset, num_samples=num_samples, seq_length=seq_length, seed=seed)

    def __len__(self):
        return len(self.sample_index)

    def __getitem__(self, idx):
        # Get the shuffled index.
        start, end = self.sample_index[idx]
        mtf_samples_indices = self.shuffle_index[start: end]
        # TODO @thomasw21 build a dataset that generates an entire batch instead of a row (allows for more optimization)
        items = [self.mtf_dataset[sample_id] for sample_id in mtf_samples_indices]

        return self.pack_samples(items)

    def pack_samples(self, items):
        """
        Greedily packs samples.

        Items:
            [
                {
                    'input_tokens': array([6, 7]),
                    'target_tokens': array([8])
                },
                {
                    'input_tokens': array([3, 4]),
                    'target_tokens': array([5])
                }
            ]

        Output:
            decoder_tokens = [[6, 7, 8, 3, 4, 5, <pad>]]: Concatenation of tokens followed with padding tokens.
            decoder_segment_ids = [[1, 1, 1, 2, 2, 2, 0]]: Segment ids determine original documents.
            decoder_is_inputs = [[1, 1, 0, 1, 1, 0, 0]]: `1` depicts inputs, `0` depicts target.
        """

        decoder_tokens = np.full((self.seq_length,), self.pad_token, dtype=np.int64)
        decoder_segment_ids = np.zeros((self.seq_length,), dtype=np.int64)
        decoder_is_inputs = np.full((self.seq_length,), False, dtype=bool)

        # `0` is reserved for padding
        item_num = 1
        cur_len = 0

        assert len(items) > 0

        for token_dict in items:
            input_token_len = len(token_dict["input_tokens"])
            target_token_len = len(token_dict["target_tokens"])

            total_len = input_token_len + target_token_len

            if cur_len + total_len > self.seq_length:
                # This should not happen at the indexing should only allow the correct number of items
                raise ValueError(f"""Items to be packed do not fit inside a single sample.
                    current length: {cur_len}
                    input tokens length: {input_token_len}
                    target token length: {target_token_len}
                    expected sequence length: {self.seq_length}
                """)

            decoder_tokens[cur_len: cur_len + input_token_len] = token_dict["input_tokens"]
            decoder_tokens[cur_len + input_token_len: cur_len + total_len] = token_dict["target_tokens"]
            decoder_segment_ids[cur_len: cur_len + total_len] = item_num
            decoder_is_inputs[cur_len: cur_len + input_token_len] = 1  # inputs
            # targets are already 0 at init, no need to update `decoder_is_inputs`

            item_num += 1
            cur_len += total_len
            assert cur_len <= self.seq_length

        return {
            "decoder_token_ids": decoder_tokens,
            "decoder_segment_ids": decoder_segment_ids,
            "decoder_is_inputs": decoder_is_inputs,
        }


def _build_index_mappings(
    name,
    data_prefix,
    nb_documents,
    mtf_dataset,
    num_samples: int,
    seq_length: int,
    seed,
):
    """
    - `shuffle_index` is [num_epoch * len(self.mtf)]
    - `sample_index` is [num_sample, 2] (storing the start and end of the sample). We query the sample via `self.shuffle_index[start:end]`

    TODO @thomas21 Instead of loading individually samples, we save the packing one and for all
    """
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    _filename = data_prefix
    _filename += '_{}_indexmap'.format(name)
    _filename += '_{}ns'.format(num_samples)
    _filename += '_{}s'.format(seed)
    sample_idx_filename = _filename + '_decoder_packed_batch_idx.npy'
    shuffle_idx_filename = _filename + '_decoder_packed_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')

            # iteratively add the entire dataset for every epoch and see if it's enough given current packing strategy
            start_time = time.time()
            row_offset = 0
            old_sample_start = 0
            epoch = 0
            shuffle_idx = []
            sample_idx = []
            while len(sample_idx) <= num_samples:
                new_document_ids = _build_shuffle_idx(nb_documents=nb_documents, np_rng=np_rng)
                # Generate a shuffling of the entire dataset
                shuffle_idx.append(new_document_ids)
                # Packs them into a single sample
                new_samples, row_offset, old_sample_start = _build_sample_idx(
                    mtf_dataset=mtf_dataset,
                    document_ids=new_document_ids,
                    seq_length=seq_length,
                    row_offset=row_offset,
                    old_sample_start=old_sample_start,
                    epoch=epoch
                )
                sample_idx.extend(new_samples)
                epoch += 1

            shuffle_idx = np.concatenate(shuffle_idx, axis=0)
            sample_idx = np.stack(sample_idx, axis=0)

            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx and sample-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        sample_idx_filename))
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))

    return sample_idx, shuffle_idx

def _build_sample_idx(mtf_dataset, document_ids, seq_length, row_offset, old_sample_start, epoch):
    """Build start and off index of each `full` batch, return that list of batch + start of the unfinished batch"""
    row_length = row_offset

    full_samples = []
    current_sample_start = old_sample_start
    epoch_offset = epoch * len(document_ids)

    assert epoch_offset >= current_sample_start
    for current_sample_end, document_id in enumerate(document_ids):
        current_sample_end = epoch_offset + current_sample_end
        sample_sizes = mtf_dataset.size(document_id)

        # TODO @thomasw21 figure out if we add <eos> tokens
        tok_len = sample_sizes["input_tokens"] + sample_sizes["target_tokens"]

        row_length = row_length + tok_len
        if row_length > seq_length:
            # current sample can't be added and requires to be added in the next one
            if current_sample_end > current_sample_start:
                full_samples.append(np.asarray([current_sample_start, current_sample_end]))
            current_sample_start = current_sample_end
            row_length = tok_len

            if tok_len > seq_length:
                # TODO @thomasw21 handle the case where a single sample cannot fit inside a row. We can
                #   - silently skip that value [currently implemented]
                #   - truncate to `seq_length`, and keep the right part
                logger.warning(f"Skipping sample id={document_id}. Maximum sequence length: {seq_length}, sample length: {tok_len}")
                current_sample_start = current_sample_end + 1  # skipping
                row_length = 0
                continue

    return full_samples, row_length, current_sample_start

def _build_shuffle_idx(nb_documents: int, np_rng):
    """Build the range [0, dataset_size) and shuffle."""
    dtype_ = np.int64

    result = np.arange(start=0, stop=nb_documents, step=1, dtype=dtype_)

    # in-place shuffling
    np_rng.shuffle(result)

    return result


def get_indexed_dataset(data_prefix: str, is_input: bool, data_impl: str, skip_warmup: bool):
    if is_input:
        field = "inputs"
    else:
        field = "targets"

    return get_indexed_dataset_(f"{data_prefix}_{field}_document", data_impl, skip_warmup)


def get_indexed_dataset_(path, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')
    start_time = time.time()
    indexed_dataset = make_indexed_dataset(path,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset