NeRF.py 5.05 KB
Newer Older
yuguo960516's avatar
glm  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import oneflow as flow
import oneflow.nn as nn
import oneflow.nn.functional as F

from libai.utils import distributed as dist


class Embedding(nn.Module):
    def __init__(self, in_channels, N_freqs, logscale=True):
        """
        Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
        in_channels: number of input channels (3 for both xyz and direction)
        """
        super(Embedding, self).__init__()
        self.N_freqs = N_freqs
        self.in_channels = in_channels
        self.funcs = [flow.sin, flow.cos]
        self.out_channels = in_channels * (len(self.funcs) * N_freqs + 1)

        if logscale:
            freq_bands = 2 ** flow.linspace(0, N_freqs - 1, N_freqs)
        else:
            freq_bands = flow.linspace(1, 2 ** (N_freqs - 1), N_freqs).cuda()
        self.register_buffer(
            "freq_bands",
            freq_bands.to_global(
                placement=dist.get_layer_placement(0),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            ),
            persistent=False,
        )

    def forward(self, x):
        """
        Embeds x to (x, sin(2^k x), cos(2^k x), ...)
        Different from the paper, "x" is also in the output
        See https://github.com/bmild/nerf/issues/12

        Inputs:
            x (Tensor): (B, self.in_channels)

        Outputs:
            out (Tensor): (B, self.out_channels)
        """
        out = [x]
        for freq in self.freq_bands:
            for func in self.funcs:
                m = func(freq * x)
                out += [m]

        return flow.cat(out, -1)


class NeRF(nn.Module):  # a alignment point with nerf_pytorch
    def __init__(
        self, D=8, W=256, input_ch=63, input_ch_views=27, output_ch=5, skips=[4], use_viewdirs=True
    ):
        """
        D: number of layers for density (sigma) encoder
        W: number of hidden units in each layer
        input_ch: number of input channels for xyz (3+3*10*2=63 by default)
        input_ch_views: number of input channels for direction (3+3*4*2=27 by default)
        output_ch: number of output channels
        skips: add skip connection in the Dth layer
        """
        super(NeRF, self).__init__()
        self.D = D
        self.W = W
        self.input_ch = input_ch
        self.input_ch_views = input_ch_views
        self.skips = skips
        self.use_viewdirs = use_viewdirs

        self.pts_linears = nn.ModuleList(
            [nn.Linear(input_ch, W)]
            + [
                nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W)
                for i in range(D - 1)
            ]
        )
        self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W // 2)])
        if use_viewdirs:
            self.feature_linear = nn.Linear(W, W)
            self.alpha_linear = nn.Linear(W, 1)
            self.rgb_linear = nn.Linear(W // 2, 3)
        else:
            self.output_linear = nn.Linear(W, output_ch)

    def forward(self, x, sigma_only=False):
        """
        Encodes input (xyz+dir) to rgb+sigma (not ready to render yet).
        For rendering this ray, please see rendering.py

        Inputs:
            x (Tensor): (B, self.in_channels_xyz+self.in_channels_dir)
               the embedded vector of position and direction
            sigma_only (bool): whether to infer sigma only. If True,
                        x is of shape (B, self.in_channels_xyz)

        Outputs:
            if sigma_ony:
                sigma (Tensor): (B, 1) sigma
            else:
                out (Tensor): (B, 4), rgb and sigma
        """
        if not sigma_only:
            input_pts, input_views = flow.split(x, [self.input_ch, self.input_ch_views], dim=-1)
        else:
            input_pts = x
        h = input_pts
        for i, l in enumerate(self.pts_linears):
            h = self.pts_linears[i](h)
            h = F.relu(h)
            if i in self.skips:
                h = flow.cat([input_pts, h], -1)

        if self.use_viewdirs:
            alpha = self.alpha_linear(h)
            if sigma_only:
                return alpha
            feature = self.feature_linear(h)
            h = flow.cat([feature, input_views], -1)

            for i, l in enumerate(self.views_linears):
                h = self.views_linears[i](h)
                h = F.relu(h)

            rgb = self.rgb_linear(h).sigmoid()  # sigmoid
            outputs = flow.cat([rgb, alpha], -1)
        else:
            outputs = self.output_linear(h)
        return outputs