Commit e91dbf8f authored by Rayyyyy's avatar Rayyyyy
Browse files

First commit.

parents
Pipeline #2645 canceled with stages
# Contributors
None
\ No newline at end of file
**LLAMA 4 COMMUNITY LICENSE AGREEMENT**
Llama 4 Version Effective Date: April 5, 2025
"**Agreement**" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
"**Documentation**" means the specifications, manuals and documentation accompanying Llama 4 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).
"**Licensee**" or "**you**" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
"**Llama 4**" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).
"**Llama Materials**" means, collectively, Meta’s proprietary Llama 4 and Documentation (and any portion thereof) made available under this Agreement.
"**Meta**" or "**we**" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). 
By clicking "I Accept" below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
1\. **License Rights and Redistribution**.
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.  
b. Redistribution and Use.  
i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display "Built with Llama" on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include "Llama" at the beginning of any such AI model name.
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. 
iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a "Notice" text file distributed as a part of such copies: "Llama 4 is licensed under the Llama 4 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved."
iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama4/use-policy](https://www.llama.com/llama4/use-policy)), which is hereby incorporated by reference into this Agreement.
  
2\. **Additional Commercial Terms**. If, on the Llama 4 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
3**. Disclaimer of Warranty**. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
4\. **Limitation of Liability**. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
5\. **Intellectual Property**.
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use "Llama" (the "Mark") solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 4 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
6\. **Term and Termination**. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 
7\. **Governing Law and Jurisdiction**. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
\ No newline at end of file
# GLM-Z1
## 论文
暂无
## 模型结构
基于transformer结构
<div align=center>
<img src="./doc/transformers.jpg"/>
</div>
## 算法原理
GLM-Z1-32B-0414 是具有深度思考能力的推理模型,这是在 GLM-4-32B-0414 的基础上,通过冷启动和扩展强化学习,以及在数学、代码和逻辑等任务上对模型的进一步训练得到的。相对于基础模型,GLM-Z1-32B-0414 显著提升了数理能力和解决复杂任务的能力。在训练的过程中,引入了基于对战排序反馈的通用强化学习,进一步增强了模型的通用能力。
GLM-Z1-Rumination-32B-0414 是具有沉思能力的深度推理模型(对标 Open AI 的 Deep Research)。不同于一般的深度思考模型,沉思模型通过更长时间的深度思考来解决更开放和复杂的问题(例如:撰写两个城市AI发展对比情况,以及未来的发展规划),沉思模型在深度思考过程中结合搜索工具处理复杂任务,并经过利用多种规则型奖励来指导和扩展端到端强化学习训练得到。Z1-Rumination 在研究型写作和复杂检索任务上的能力得到了显著提升。
最后,GLM-Z1-9B-0414 是一个惊喜。沿用上述一系列技术,训练了一个保持开源传统的 9B 小尺寸模型。尽管规模更小,GLM-Z1-9B-0414 在数学推理和通用任务中依然展现出极为优秀的能力,其整体表现已处于同尺寸开源模型中的领先水平。特别是在资源受限的场景下,该模型在效率与效果之间实现了出色的平衡,为追求轻量化部署的用户提供了强有力的选择。
效果展示
<div align=center>
<img src="./doc/Bench-Z1-9B.png"/>
<img src="./doc/Bench-Z1-32B.png"/>
</div>
## 环境配置
`-v 路径``docker_nam`e和`imageID`根据实际情况修改
### Docker(方法一)
```bash
dcoker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.4.1-ubuntu22.04-dtk25.04-py3.10
docker run -it --shm-size 200g --network=host --name {docker_name} --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro {imageID} bash
cd /your_code_path/glm-4-z1_pytorch
pip install transformers>=4.51.3
```
### Dockerfile(方法二)
```bash
cd docker
docker build --no-cache -t glm4-z1:latest .
docker run -it --shm-size 200g --network=host --name {docker_name} --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro {imageID} bash
cd /your_code_path/glm-4-z1_pytorch
pip install transformers>=4.51.3
```
### Anaconda(方法三)
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```bash
DTK: 25.04
python: 3.10
torch: 2.4.1
deepspeed: 0.14.2+das.opt2.dtk2504
```
`Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应`
其它非深度学习库安装方式如下:
```bash
pip install transformers>=4.51.3
```
## 数据集
## 训练
### Llama Factory 微调方法(推荐)
1. 训练库安装(**非glm-4-z1_pytorch目录下**),安装版本**大于 v0.9.2**`Llama-Factory`具体安装方法请参考仓库的README。
```
git clone https://developer.sourcefind.cn/codes/OpenDAS/llama-factory
```
2. 通过[预训练权重](#预训练权重)下载预训练模型,当前用例使用[GLM-Z1-9B-0414](https://huggingface.co/THUDM/GLM-Z1-9B-0414)模型。
#### 全参微调
SFT训练脚本示例,参考`llama-factory/train_full`下对应yaml文件。
**参数修改**
- **--model_name_or_path**: 修改为待训练模型地址,如 `/data/GLM-Z1-9B-0414`
- **--dataset**: 微调训练集名称,可选数据集请参考 `llama-factory/data/dataset_info.json`
- **--template**: 将 default 修改为 `glm4`
- **--output_dir**: 模型保存地址
其他参数如:`--learning_rate``--save_steps`可根据自身硬件及需求进行修改。
#### lora微调
SFT训练脚本示例,参考`llama-factory/train_lora`下对应yaml文件。
参数解释同[#全参微调](#全参微调)
## 推理
### transformers推理方法
```bash
## 必须添加HF_ENDPOINT环境变量
export HF_ENDPOINT=https://hf-mirror.com
python infer_transformers.py --model_path THUDM/GLM-Z1-9B-0414
```
## result
<div align=center>
<img src="./doc/transformers_results.jpg"/>
</div>
### 精度
暂无
## 应用场景
### 算法类别
对话问答
### 热点应用行业
制造,广媒,家居,教育
## 预训练权重
- [GLM-Z1-9B-0414](https://huggingface.co/THUDM/GLM-Z1-9B-0414)
- [GLM-Z1-32B-0414](https://huggingface.co/THUDM/GLM-Z1-32B-0414)
## 源码仓库及问题反馈
- https://developer.sourcefind.cn/codes/modelzoo/glm-4-z1_pytorch
## 参考资料
- https://github.com/THUDM/GLM-4
FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.4.1-ubuntu22.04-dtk25.04-py3.10
\ No newline at end of file
icon.png

53.8 KB

import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="THUDM/GLM-Z1-9B-0414")
parser.add_argument("--message", type=str, default="Let a, b be positive real numbers such that ab = a + b + 3. Determine the range of possible values for a + b.")
args = parser.parse_args()
return args
if __name__ == "__main__":
# 获取参数信息
args = get_args()
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = AutoModelForCausalLM.from_pretrained(args.model_path, device_map="auto")
message = [{"role": "user", "content": args.message}]
inputs = tokenizer.apply_chat_template(
message,
return_tensors="pt",
add_generation_prompt=True,
return_dict=True,
).to(model.device)
generate_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": 4096,
"do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
### model
model_name_or_path: THUDM/GLM-Z1-9B-0414
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
### dataset
dataset: identity,alpaca_en_demo
template: glm4
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/glm-z1-9b/full/sft
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: THUDM/GLM-Z1-9B-0414
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
### dataset
dataset: identity,alpaca_en_demo
template: glm4
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/glm-z1-9b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
# 模型唯一标识
modelCode=1500
# 模型名称
modelName=glm-4-z1_pytorch
# 模型描述
modelDescription=智谱开在数学、代码和逻辑等任务上对模型的进一步强化学习得到GLM4-Z1模型
# 应用场景
appScenario=推理,训练,对话问答,制造,广媒,家居,教育
# 框架类型
frameType=pytorch
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment