visual.py 6.71 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
import torch
from torch import nn
from argparse import Namespace
import torch.nn.functional as F
from transformers.activations import ACT2FN
import math
from torch.nn import LayerNorm

wanglch's avatar
wanglch committed
9
10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

wanglch's avatar
wanglch committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
    if scaling_attention_score:
        query_layer = query_layer / math.sqrt(query_layer.shape[-1])
    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

    attention_probs = F.softmax(attention_scores, dim=-1)

    context_layer = torch.matmul(attention_probs, value_layer)
    return context_layer

def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
    if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
        # Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_layer, key_layer, value_layer, 
            attn_mask=None,
            dropout_p=0.,
            is_causal=False
        )
        return attn_output
    else:
        return standard_attention(
            query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
        )

class PatchEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
        self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
        self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)

    def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
wanglch's avatar
wanglch committed
44
        x = self.proj(images).to(device)
wanglch's avatar
wanglch committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        x = x.flatten(2).transpose(1, 2)
        cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_token, x), dim=1)
        x += self.position_embedding.weight.unsqueeze(0)
        return x


class Attention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_heads = config.num_heads
        head_dim = config.hidden_size // config.num_heads
        self.scale = head_dim ** -0.5
        self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.output_dropout = torch.nn.Dropout(config.dropout_prob)

    def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
        B, L, _ = x.shape
        qkv = self.query_key_value(x)
        qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)  # 3, B, H, L, D
        q, k, v = qkv[0], qkv[1], qkv[2]
        
        out = attention_fn_default(
            q, k, v
        )
wanglch's avatar
wanglch committed
71
        output = self.dense(out.transpose(1, 2).reshape(B, L, -1))
wanglch's avatar
wanglch committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        output = self.output_dropout(output)
        return output

    def attention(self, q, k, v):
        attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
        attn_weights = attn_weights.softmax(dim=-1)
        output = torch.matmul(attn_weights, v)
        return output


class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.activation_fn(x)
        x = self.fc2(x)
        return x


class TransformerLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attention = Attention(config)
        self.mlp = MLP(config)
        self.post_attention_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        attention_input = hidden_states
        attention_output = self.input_layernorm(self.attention(attention_input))
        hidden_states = attention_input + attention_output
        mlp_input = hidden_states
        mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
        output = mlp_input + mlp_output
        return output


class Transformer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states):
        for layer_module in self.layers:
            hidden_states = layer_module(hidden_states)
        return hidden_states


class GLU(nn.Module):
    def __init__(self, config, in_features):
        super().__init__()
        self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
        self.norm1 = nn.LayerNorm(config.hidden_size)
        self.act1 = nn.GELU()
        self.act2 = nn.functional.silu
        self.dense_h_to_4h = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
        self.gate_proj = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
        self.dense_4h_to_h = nn.Linear(config.ffn_hidden_size, config.hidden_size, bias=False)

    def forward(self, x):
        x = self.linear_proj(x)
        x = self.act1(self.norm1(x))
        x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
        x = self.dense_4h_to_h(x)
        return x


class EVA2CLIPModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        vision_config = Namespace(**config.vision_config)
        self.patch_embedding = PatchEmbedding(vision_config)
        self.transformer = Transformer(vision_config)
        self.linear_proj = GLU(config, in_features=config.hidden_size)
        self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=config.hidden_size, kernel_size=2, stride=2)
        self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.scaling_factor = vision_config.scaling_factor

    def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
        x = self.patch_embedding(images)
        x = self.transformer(x)
        x = x[:, 1:]

        b, s, h = x.shape
        grid_size = int(s**0.5)
        x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
        x = self.conv(x)

        x = x.flatten(2).transpose(1, 2)
        x = self.linear_proj(x)
        boi = self.boi.expand(x.shape[0], -1, -1)
        eoi = self.eoi.expand(x.shape[0], -1, -1)
        x = torch.cat((boi, x, eoi), dim=1)
        x = x / self.scaling_factor
        return x