simpo_trainers.py 13.4 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel, trainer
from trl import DPOTrainer as HFDPOTrainer

from swift.llm.utils.template import Context, Template
from swift.llm.utils.utils import sort_by_max_length
from swift.utils import get_logger
from .callback import DefaultFlowCallbackNew, PrinterCallbackNew, ProgressCallbackNew
from .mixin import PushToMsHubMixin, SwiftMixin

logger = get_logger()


# ref: https://github.com/princeton-nlp/SimPO/blob/main/scripts/simpo_trainer.py
class SimPOTrainer(PushToMsHubMixin, SwiftMixin, HFDPOTrainer):

    def __init__(self, *args, template: Template, test_oom_error=False, **kwargs):
        self.template = template
        self.gamma = kwargs.pop('gamma')
        super().__init__(*args, **kwargs)
        train_ds_info = self.stat_dataset(self.train_dataset)
        val_ds_info = self.stat_dataset(self.eval_dataset)
        self.dataset_info = {'train_dataset': train_ds_info, 'val_dataset': val_ds_info}
        if test_oom_error:
            self.train_dataset = sort_by_max_length(self.train_dataset, 20000)
        # performance
        self.perf: Dict[str, Any] = {
            'gen_time': 0.,
            'gen_len': 0,
            'memory': {},
            'model': self.model.get_trainable_parameters() if hasattr(self.model, 'get_trainable_parameters') else None,
        }

    def train(self, *args, **kwargs) -> torch.Tensor:
        res = super().train(*args, **kwargs)
        for i in range(torch.cuda.device_count()):
            self.perf['memory'][f'cuda:{i}'] = f'{torch.cuda.max_memory_reserved(i)/1024/1024/1024:.2f}GiB'
        return res

    def concat_template(self, feature):
        query: Optional[str] = feature.get('query', None)
        system: Optional[str] = feature.get('system', None)
        history: List = feature.get('history', [])
        if system is None:
            if self.template.use_default_system:
                system = self.template.default_system
        else:
            assert self.template.prefix_has_system is not None, 'not support `system`'
        res_context_list: List[Context] = []
        compute_loss_idx: List[float] = []
        if system is None:
            assert self.template.prefix != self.template.prefix_has_system, f'template.prefix: {self.template.prefix}'
            prefix = self.template.prefix
        else:
            prefix = self.template.prefix_has_system
        self.template._concat_context_list(prefix, res_context_list, compute_loss_idx, system=system)
        for i, (q, r) in enumerate(history):
            self.template._concat_context_list(
                [
                    *self.template.prompt,
                    '{{RESPONSE}}',
                    *self.template.chat_sep  # noqa
                ],
                res_context_list,
                compute_loss_idx,
                query=q,
                response=r,
                round0=i)  # noqa
        self.template._concat_context_list(
            self.template.prompt, res_context_list, compute_loss_idx, query=query, round0=len(history))
        res_context_list, compute_loss_idx = self.template._simplify_context_list(res_context_list, compute_loss_idx)

        return res_context_list, feature['response'], feature['rejected_response'], compute_loss_idx

    def build_tokenized_answer(self, prompt, answer, prompt_loss_scale):
        input_ids, labels, loss_scale, kwargs = self.template._encode_context_list(prompt, prompt_loss_scale)
        tgt_input_ids = self.template._encode_context_list([answer], [1.0])[0]
        tgt_input_ids += self.template._encode_context_list(self.template.suffix, [1.0])[0]
        return dict(
            prompt_input_ids=input_ids,
            prompt_attention_mask=[1] * len(input_ids),
            input_ids=tgt_input_ids,
            attention_mask=[1] * len(tgt_input_ids),
        )

    def tokenize_row(self, feature, model: Union[PreTrainedModel, nn.Module] = None) -> Dict:
        batch = {}
        if not self.is_encoder_decoder:
            prompt, chosen, rejected, loss_scale = self.concat_template(feature)

            prompt_tokens, _, _, _ = self.template._encode_context_list(prompt, loss_scale)
            prompt_tokens = {
                'input_ids': prompt_tokens,
                'attention_mask': [1] * len(prompt_tokens),
            }
            prompt_tokens = {f'prompt_{k}': v for k, v in prompt_tokens.items()}

            if not isinstance(chosen, str):
                raise ValueError(f'chosen should be an str but got {type(chosen)}')
            chosen_tokens = self.build_tokenized_answer(prompt, chosen, loss_scale)

            if not isinstance(rejected, str):
                raise ValueError(f'rejected should be an str but got {type(rejected)}')
            rejected_tokens = self.build_tokenized_answer(prompt, rejected, loss_scale)

            longer_response_length = max(len(chosen_tokens['input_ids']), len(rejected_tokens['input_ids']))

            # if combined sequence is too long, truncate the prompt
            for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]:
                if len(answer_tokens['prompt_input_ids']) + longer_response_length > self.max_length:
                    if self.truncation_mode == 'keep_start':
                        for k in ['prompt_input_ids', 'prompt_attention_mask']:
                            answer_tokens[k] = answer_tokens[k][:self.max_prompt_length]
                    elif self.truncation_mode == 'keep_end':
                        for k in ['prompt_input_ids', 'prompt_attention_mask']:
                            answer_tokens[k] = answer_tokens[k][-self.max_prompt_length:]
                    else:
                        raise ValueError(f'Unknown truncation mode: {self.truncation_mode}')

            # if that's still too long, truncate the response
            for answer_tokens in [chosen_tokens, rejected_tokens]:
                if len(answer_tokens['prompt_input_ids']) + longer_response_length > self.max_length:
                    for k in ['input_ids', 'attention_mask']:
                        answer_tokens[k] = answer_tokens[k][:self.max_length - self.max_prompt_length]

            # Create labels
            chosen_sequence_tokens = {
                k: chosen_tokens[f'prompt_{k}'] + chosen_tokens[k]
                for k in ['input_ids', 'attention_mask']
            }
            rejected_sequence_tokens = {
                k: rejected_tokens[f'prompt_{k}'] + rejected_tokens[k]
                for k in ['input_ids', 'attention_mask']
            }
            chosen_sequence_tokens['labels'] = chosen_sequence_tokens['input_ids'][:]
            _paddings = [self.label_pad_token_id] * len(chosen_tokens['prompt_input_ids'])
            chosen_sequence_tokens['labels'][:len(chosen_tokens['prompt_input_ids'])] = _paddings
            rejected_sequence_tokens['labels'] = rejected_sequence_tokens['input_ids'][:]
            _paddings = [self.label_pad_token_id] * len(rejected_tokens['prompt_input_ids'])
            rejected_sequence_tokens['labels'][:len(rejected_tokens['prompt_input_ids'])] = _paddings

            for k, toks in {
                    'chosen_': chosen_sequence_tokens,
                    'rejected_': rejected_sequence_tokens,
                    '': prompt_tokens,
            }.items():
                for type_key, tokens in toks.items():
                    if type_key == 'token_type_ids':
                        continue
                    batch[f'{k}{type_key}'] = tokens

        else:
            # encoder-decoder
            batch = super().tokenize_row(feature, model)

        return batch

    @staticmethod
    def stat_dataset(llm_dataset) -> Any:
        _token_len = []
        from datasets import Dataset as HfDataset
        from swift.utils.np_utils import stat_array
        if isinstance(llm_dataset, HfDataset):
            chosen = llm_dataset['chosen_input_ids']
            rejected = llm_dataset['rejected_input_ids']
            for cc, rr in zip(chosen, rejected):
                _token_len.append(max(len(cc), len(rr)))
        else:
            for d in llm_dataset:
                _token_len.append(max(len(d['chosen_input_ids']), len(d['rejected_input_ids'])))
        _, stat_str = stat_array(_token_len)
        logger.info(f'Dataset Token Length: {stat_str}')
        return stat_str

    def get_batch_loss_metrics(
        self,
        model,
        batch: Dict[str, Union[List, torch.LongTensor]],
        train_eval: Literal['train', 'eval'] = 'train',
    ):
        """Compute the SimPO loss and other metrics for the given batch of inputs for train or test."""
        metrics = {}

        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
        ) = self.concatenated_forward(model, batch)

        losses, chosen_rewards, rejected_rewards = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)

        reward_accuracies = (chosen_rewards > rejected_rewards).float()

        prefix = 'eval_' if train_eval == 'eval' else ''
        metrics[f'{prefix}rewards/chosen'] = chosen_rewards.mean().cpu()
        metrics[f'{prefix}rewards/rejected'] = rejected_rewards.mean().cpu()
        metrics[f'{prefix}rewards/accuracies'] = reward_accuracies.mean().cpu()
        metrics[f'{prefix}rewards/margins'] = (chosen_rewards - rejected_rewards).mean().cpu()
        metrics[f'{prefix}logps/rejected'] = policy_rejected_logps.detach().mean().cpu()
        metrics[f'{prefix}logps/chosen'] = policy_chosen_logps.detach().mean().cpu()
        metrics[f'{prefix}logits/rejected'] = policy_rejected_logits.detach().mean().cpu()
        metrics[f'{prefix}logits/chosen'] = policy_chosen_logits.detach().mean().cpu()

        return losses.mean(), metrics

    def concatenated_forward(
        self, model: nn.Module, batch: Dict[str, Union[List, torch.LongTensor]]
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        """Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.

        We do this to avoid doing two forward passes, because it's faster for FSDP.
        """
        concatenated_batch = self.concatenated_inputs(
            batch,
            is_encoder_decoder=self.is_encoder_decoder,
            label_pad_token_id=self.label_pad_token_id,
            padding_value=self.padding_value,
            device=self.accelerator.device,
        )
        len_chosen = batch['chosen_labels'].shape[0]

        model_kwargs = ({
            'labels': concatenated_batch['concatenated_labels'],
            'decoder_input_ids': concatenated_batch.pop('concatenated_decoder_input_ids', None),
        } if self.is_encoder_decoder else {})
        all_logits = model(
            concatenated_batch['concatenated_input_ids'],
            attention_mask=concatenated_batch['concatenated_attention_mask'],
            use_cache=False,
            **model_kwargs,
        ).logits

        all_logps = self.get_batch_logps(
            all_logits,
            concatenated_batch['concatenated_labels'],
            average_log_prob=True,
            is_encoder_decoder=self.is_encoder_decoder,
            label_pad_token_id=self.label_pad_token_id,
        )

        chosen_logps = all_logps[:len_chosen]
        rejected_logps = all_logps[len_chosen:]

        chosen_logits = all_logits[:len_chosen]
        rejected_logits = all_logits[len_chosen:]

        return (chosen_logps, rejected_logps, chosen_logits, rejected_logits)

    def simpo_loss(
        self,
        policy_chosen_logps: torch.FloatTensor,
        policy_rejected_logps: torch.FloatTensor,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        """Compute the SimPO loss for a batch of policy model log probabilities.

        Args:
            policy_chosen_logps: Log probabilities of the policy model for the chosen responses. \
                Shape: (batch_size,)
            policy_rejected_logps: Log probabilities of the policy model for the rejected responses.\
                Shape: (batch_size,)

        Returns:
            A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
            The losses tensor contains the SimPO loss for each example in the batch.
            The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses,\
                  respectively.
        """
        pi_logratios = policy_chosen_logps - policy_rejected_logps
        gamma_logratios = self.gamma / self.beta
        pi_logratios = pi_logratios.to(self.accelerator.device)
        logits = pi_logratios - gamma_logratios

        if self.loss_type == 'sigmoid':
            losses = (-F.logsigmoid(self.beta * logits) *
                      (1 - self.label_smoothing) - F.logsigmoid(-self.beta * logits) * self.label_smoothing)
        elif self.loss_type == 'hinge':
            losses = torch.relu(1 - self.beta * logits)
        else:
            raise ValueError(f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge']")

        chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
        rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()

        return losses, chosen_rewards, rejected_rewards


# monkey patching
trainer.DEFAULT_PROGRESS_CALLBACK = ProgressCallbackNew
trainer.DEFAULT_CALLBACKS = [DefaultFlowCallbackNew]
trainer.PrinterCallback = PrinterCallbackNew