client_utils.py 10.5 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import base64
import hashlib
import os
import re
from copy import deepcopy
from io import BytesIO
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Tuple, Union

import aiohttp
import json
import requests
from dacite import from_dict
from requests.exceptions import HTTPError

from .protocol import (ChatCompletionResponse, ChatCompletionStreamResponse, CompletionResponse,
                       CompletionStreamResponse, ModelList, XRequestConfig)
from .template import History
from .utils import Messages, history_to_messages


def get_model_list_client(host: str = '127.0.0.1', port: str = '8000', **kwargs) -> ModelList:
    url = kwargs.pop('url', None)
    if url is None:
        url = f'http://{host}:{port}/v1'
    url = url.rstrip('/')
    url = f'{url}/models'
    resp_obj = requests.get(url).json()
    return from_dict(ModelList, resp_obj)


def _parse_stream_data(data: bytes) -> Optional[str]:
    data = data.decode(encoding='utf-8')
    data = data.strip()
    if len(data) == 0:
        return
    assert data.startswith('data:')
    return data[5:].strip()


def _to_base64(img_path: str) -> str:
    if not os.path.isfile(img_path):
        return img_path
    with open(img_path, 'rb') as f:
        img_base64: str = base64.b64encode(f.read()).decode('utf-8')
    return img_base64


def _encode_prompt(prompt: str) -> str:
    pattern = r'<(?:img|audio)>(.+?)</(?:img|audio)>'
    match_iter = re.finditer(pattern, prompt)
    new_prompt = ''
    idx = 0
    for m in match_iter:
        span = m.span(1)
        path = m.group(1)
        img_base64 = _to_base64(path)
        new_prompt += prompt[idx:span[0]] + img_base64
        idx = span[1]
    new_prompt += prompt[idx:]
    return new_prompt


def _from_base64(img_base64: str, tmp_dir: str) -> str:
    from PIL import Image
    if os.path.isfile(img_base64) or img_base64.startswith('http'):
        return img_base64
    img_base64: bytes = img_base64.encode('utf-8')
    sha256_hash = hashlib.sha256(img_base64).hexdigest()
    img_path = os.path.join(tmp_dir, f'{sha256_hash}.png')
    image = Image.open(BytesIO(base64.b64decode(img_base64)))
    image.save(img_path)
    return img_path


def _decode_prompt(prompt: str, tmp_dir: str) -> str:
    pattern = r'<(?:img|audio)>(.+?)</(?:img|audio)>'
    match_iter = re.finditer(pattern, prompt)
    new_content = ''
    idx = 0
    for m in match_iter:
        span = m.span(1)
        img_base64 = m.group(1)
        img_path = _from_base64(img_base64, tmp_dir)
        new_content += prompt[idx:span[0]] + img_path
        idx = span[1]
    new_content += prompt[idx:]
    return new_content


def convert_to_base64(*,
                      messages: Optional[Messages] = None,
                      prompt: Optional[str] = None,
                      images: Optional[List[str]] = None) -> Dict[str, Any]:
    """local_path -> base64"""
    res = {}
    if messages is not None:
        res_messages = []
        for m in messages:
            m_new = deepcopy(m)
            m_new['content'] = _encode_prompt(m_new['content'])
            res_messages.append(m_new)
        res['messages'] = res_messages
    if prompt is not None:
        prompt = _encode_prompt(prompt)
        res['prompt'] = prompt
    if images is not None:
        res_images = []
        for image in images:
            res_images.append(_to_base64(image))
        res['images'] = res_images
    return res


def decode_base64(*,
                  messages: Optional[Messages] = None,
                  prompt: Optional[str] = None,
                  images: Optional[List[str]] = None,
                  tmp_dir: str = 'tmp') -> Dict[str, Any]:
    os.makedirs(tmp_dir, exist_ok=True)
    res = {}
    if messages is not None:
        res_messages = []
        for m in messages:
            m_new = deepcopy(m)
            m_new['content'] = _decode_prompt(m_new['content'], tmp_dir)
            res_messages.append(m_new)
        res['messages'] = res_messages
    if prompt is not None:
        prompt = _decode_prompt(prompt, tmp_dir)
        res['prompt'] = prompt
    if images is not None:
        res_images = []
        for image in images:
            image = _from_base64(image, tmp_dir)
            res_images.append(image)
        res['images'] = res_images
    return res


def _pre_inference_client(model_type: str,
                          query: str,
                          history: Optional[History] = None,
                          system: Optional[str] = None,
                          images: Optional[List[str]] = None,
                          *,
                          is_chat_request: Optional[bool] = None,
                          request_config: Optional[XRequestConfig] = None,
                          host: str = '127.0.0.1',
                          port: str = '8000',
                          **kwargs) -> Tuple[str, Dict[str, Any], bool]:
    if images is None:
        images = []
    model_list = get_model_list_client(host, port, **kwargs)
    for model in model_list.data:
        if model_type == model.id:
            _is_chat = model.is_chat
            is_multimodal = model.is_multimodal
            break
    else:
        raise ValueError(f'model_type: {model_type}, model_list: {[model.id for model in model_list.data]}')

    if is_chat_request is None:
        is_chat_request = _is_chat
    assert is_chat_request is not None, (
        'Please set the `is_chat_request` parameter to indicate whether the model is a chat model.')
    data = {k: v for k, v in request_config.__dict__.items() if not k.startswith('__')}
    url = kwargs.pop('url', None)
    if url is None:
        url = f'http://{host}:{port}/v1'
    url = url.rstrip('/')
    if is_chat_request:
        messages = history_to_messages(history, query, system)
        if is_multimodal:
            messages = convert_to_base64(messages=messages)['messages']
            images = convert_to_base64(images=images)['images']
        data['messages'] = messages
        url = f'{url}/chat/completions'
    else:
        assert system is None and history is None, (
            'The chat template for text generation does not support system and history.')
        if is_multimodal:
            query = convert_to_base64(prompt=query)['prompt']
            images = convert_to_base64(images=images)['images']
        data['prompt'] = query
        url = f'{url}/completions'
    data['model'] = model_type
    if len(images) > 0:
        data['images'] = images

    return url, data, is_chat_request


def inference_client(
    model_type: str,
    query: str,
    history: Optional[History] = None,
    system: Optional[str] = None,
    images: Optional[List[str]] = None,
    *,
    is_chat_request: Optional[bool] = None,
    request_config: Optional[XRequestConfig] = None,
    host: str = '127.0.0.1',
    port: str = '8000',
    **kwargs
) -> Union[ChatCompletionResponse, CompletionResponse, Iterator[ChatCompletionStreamResponse],
           Iterator[CompletionStreamResponse]]:
    if request_config is None:
        request_config = XRequestConfig()
    url, data, is_chat_request = _pre_inference_client(
        model_type,
        query,
        history,
        system,
        images,
        is_chat_request=is_chat_request,
        request_config=request_config,
        host=host,
        port=port,
        **kwargs)

    if request_config.stream:
        if is_chat_request:
            ret_cls = ChatCompletionStreamResponse
        else:
            ret_cls = CompletionStreamResponse
        resp = requests.post(url, json=data, stream=True)

        def _gen_stream() -> Union[Iterator[ChatCompletionStreamResponse], Iterator[CompletionStreamResponse]]:
            for data in resp.iter_lines():
                data = _parse_stream_data(data)
                if data == '[DONE]':
                    break
                if data is not None:
                    resp_obj = json.loads(data)
                    if resp_obj['object'] == 'error':
                        raise HTTPError(resp_obj['message'])
                    yield from_dict(ret_cls, resp_obj)

        return _gen_stream()
    else:
        resp_obj = requests.post(url, json=data).json()
        if is_chat_request:
            ret_cls = ChatCompletionResponse
        else:
            ret_cls = CompletionResponse
        if resp_obj['object'] == 'error':
            raise HTTPError(resp_obj['message'])
        return from_dict(ret_cls, resp_obj)


async def inference_client_async(
    model_type: str,
    query: str,
    history: Optional[History] = None,
    system: Optional[str] = None,
    images: Optional[List[str]] = None,
    *,
    is_chat_request: Optional[bool] = None,
    request_config: Optional[XRequestConfig] = None,
    host: str = '127.0.0.1',
    port: str = '8000',
    **kwargs
) -> Union[ChatCompletionResponse, CompletionResponse, Iterator[ChatCompletionStreamResponse],
           Iterator[CompletionStreamResponse]]:
    if request_config is None:
        request_config = XRequestConfig()
    url, data, is_chat_request = _pre_inference_client(
        model_type,
        query,
        history,
        system,
        images,
        is_chat_request=is_chat_request,
        request_config=request_config,
        host=host,
        port=port,
        **kwargs)

    if request_config.stream:
        if is_chat_request:
            ret_cls = ChatCompletionStreamResponse
        else:
            ret_cls = CompletionStreamResponse

        async def _gen_stream(
        ) -> Union[AsyncIterator[ChatCompletionStreamResponse], AsyncIterator[CompletionStreamResponse]]:
            async with aiohttp.ClientSession() as session:
                async with session.post(url, json=data) as resp:
                    async for _data in resp.content:
                        _data = _parse_stream_data(_data)
                        if _data == '[DONE]':
                            break
                        if _data is not None:
                            resp_obj = json.loads(_data)
                            if resp_obj['object'] == 'error':
                                raise HTTPError(resp_obj['message'])
                            yield from_dict(ret_cls, resp_obj)

        return _gen_stream()
    else:
        if is_chat_request:
            ret_cls = ChatCompletionResponse
        else:
            ret_cls = CompletionResponse
        async with aiohttp.ClientSession() as session:
            async with session.post(url, json=data) as resp:
                resp_obj = await resp.json()
                if resp_obj['object'] == 'error':
                    raise HTTPError(resp_obj['message'])
                return from_dict(ret_cls, resp_obj)