deploy.py 23.8 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# Copyright (c) Alibaba, Inc. and its affiliates.
import inspect
import logging
import time
from dataclasses import asdict
from http import HTTPStatus
from typing import List, Optional, Union

import json
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, StreamingResponse
from modelscope import GenerationConfig
from packaging import version
from peft import PeftModel

from swift.llm.agent.utils import split_action_action_input
from swift.utils import get_logger, get_main, seed_everything
from .infer import merge_lora, prepare_model_template
from .utils import (TEMPLATE_MAPPING, ChatCompletionMessageToolCall, ChatCompletionRequest, ChatCompletionResponse,
                    ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, ChatCompletionStreamResponse,
                    ChatMessage, CompletionRequest, CompletionResponse, CompletionResponseChoice,
                    CompletionResponseStreamChoice, CompletionStreamResponse, DeltaMessage, DeployArguments, Function,
                    Model, ModelList, UsageInfo, decode_base64, inference, inference_stream, messages_join_observation,
                    messages_to_history, random_uuid)

logger = get_logger()

app = FastAPI()
_args = None
model = None
llm_engine = None
template = None


def create_error_response(status_code: Union[int, str, HTTPStatus], message: str) -> JSONResponse:
    status_code = int(status_code)
    return JSONResponse({'message': message, 'object': 'error'}, status_code)


@app.get('/v1/models')
async def get_available_models():
    global _args
    model_list = [_args.model_type]
    if _args.lora_request_list is not None:
        model_list += [lora_request.lora_name for lora_request in _args.lora_request_list]
    data = [
        Model(
            id=model_id,
            is_chat=not is_generation_template(_args.template_type),
            is_multimodal=_args.is_multimodal,
            owned_by=_args.owned_by) for model_id in model_list
    ]
    return ModelList(data=data)


async def check_length(request: Union[ChatCompletionRequest, CompletionRequest], input_ids: List[int]) -> Optional[str]:
    global llm_engine, model, _args
    if _args.infer_backend == 'vllm':
        max_model_len = llm_engine.model_config.max_model_len
    else:
        max_model_len = model.max_model_len
    num_tokens = len(input_ids)
    max_tokens = request.max_tokens
    if max_model_len is None:
        max_model_len = 8192
        logger.warning(
            'The current model is unable to retrieve `max_model_len`. It is set to the default value of 8192.')
    if max_tokens is None:
        max_tokens = max_model_len - num_tokens
        request.max_tokens = max_tokens
    if max_tokens + num_tokens > max_model_len:
        error_msg = (f'Your prompt has {num_tokens} tokens, and you have set the `max_tokens` to {max_tokens}, '
                     f'but the maximum model length supported is {max_model_len}. '
                     'Please reduce the number of tokens in the prompt or the `max_tokens`.')
        return error_msg


async def check_model(request: Union[ChatCompletionRequest, CompletionRequest]) -> Optional[str]:
    model_list = await get_available_models()
    model_type_list = [model.id for model in model_list.data]
    if request.model in model_type_list:
        return
    else:
        return f'`{request.model}` is not in the model_list: `{model_type_list}`.'


def is_generation_template(template_type: str) -> bool:
    template_info = TEMPLATE_MAPPING[template_type]
    is_generation = template_info.get('is_generation', False)
    return is_generation


@torch.inference_mode()
async def inference_vllm_async(request: Union[ChatCompletionRequest, CompletionRequest], raw_request: Request):
    global llm_engine, template, _args
    from .utils import VllmGenerationConfig
    error_msg = await check_model(request)
    if error_msg is not None:
        return create_error_response(HTTPStatus.BAD_REQUEST, error_msg)

    if request.seed is not None:
        seed_everything(request.seed, verbose=False)
    _request = {'model': request.model}
    if isinstance(request, ChatCompletionRequest):
        if is_generation_template(template.template_type):
            return create_error_response(
                HTTPStatus.BAD_REQUEST, f'The chat template `{template.template_type}` corresponding to '
                f'the model `{llm_engine.model_type}` is in text generation format. '
                'Please use the `completions` API.')

        # For agent, check if response is endwith observations and join tool observation
        messages_join_observation(request.messages)

        example = messages_to_history(request.messages)

        # tool choice
        if request.tool_choice is not None and request.tools is not None:
            if isinstance(request.tool_choice, dict):
                name = request.tool_choice['function']['name']
                tool = next((t for t in request.tools if t['function']['name'] == name), None)
                if tool is None:
                    raise ValueError(f"Tool choice '{name}' not found in tools.")
                example['tools'] = [tool]
            elif request.tool_choice == 'auto':
                example['tools'] = request.tools

        input_ids = template.encode(example)[0]['input_ids']
        request_id = f'chatcmpl-{random_uuid()}'
        _request['messages'] = request.messages
    else:
        if not is_generation_template(template.template_type):
            return create_error_response(
                HTTPStatus.BAD_REQUEST, f'The chat template `{template.template_type}` corresponding to '
                f'the model `{llm_engine.model_type}` is in chat format. '
                'Please use the `chat.completions` API.')
        example = {'query': request.prompt}
        input_ids = template.encode(example)[0]['input_ids']
        request_id = f'cmpl-{random_uuid()}'
        _request['prompt'] = request.prompt

    request_info = {'request_id': request_id}
    request_info.update(_request)

    error_msg = await check_length(request, input_ids)
    if error_msg is not None:
        return create_error_response(HTTPStatus.BAD_REQUEST, error_msg)

    kwargs = {'max_new_tokens': request.max_tokens}
    for key in ['n', 'stop', 'best_of', 'frequency_penalty', 'length_penalty', 'presence_penalty', 'num_beams']:
        kwargs[key] = getattr(request, key)
    for key in ['temperature', 'top_k', 'top_p', 'repetition_penalty']:
        new_value = getattr(request, key)
        if new_value is None:
            kwargs[key] = getattr(llm_engine.generation_config, key)
        else:
            kwargs[key] = new_value

    generation_config = VllmGenerationConfig(**kwargs)
    if generation_config.use_beam_search is True and request.stream is True:
        error_msg = 'Streaming generation does not support beam search.'
        raise ValueError(error_msg)
    tokenizer = template.tokenizer
    if tokenizer.eos_token is not None and tokenizer.eos_token not in generation_config.stop:
        generation_config.stop.append(tokenizer.eos_token)
    if isinstance(template.suffix[-1], str) and template.suffix[-1] not in generation_config.stop:
        generation_config.stop.append(template.suffix[-1])
    if isinstance(template.suffix[-1], list):
        token_str = tokenizer.decode(template.suffix[-1])
        if token_str not in generation_config.stop:
            generation_config.stop.append(token_str)
    request_info['generation_config'] = generation_config
    request_info.update({'seed': request.seed, 'stream': request.stream})
    logger.info(request_info)

    created_time = int(time.time())
    generate_kwargs = {}
    if _args.vllm_enable_lora and request.model != _args.model_type:
        lora_request = None
        for lora_req in _args.lora_request_list:
            if lora_req.lora_name == request.model:
                lora_request = lora_req
                break
        assert lora_request is not None
        generate_kwargs['lora_request'] = lora_request

    import vllm
    if version.parse(vllm.__version__) >= version.parse('0.4.3'):
        result_generator = llm_engine.generate({'prompt_token_ids': input_ids}, generation_config, request_id,
                                               **generate_kwargs)
    else:
        result_generator = llm_engine.generate(None, generation_config, request_id, input_ids, **generate_kwargs)

    async def _generate_full():
        result = None
        async for result in result_generator:
            if await raw_request.is_disconnected():
                await llm_engine.abort(request_id)
                return create_error_response(HTTPStatus.BAD_REQUEST, 'Client disconnected')
        assert result is not None
        num_prompt_tokens = len(result.prompt_token_ids)
        num_generated_tokens = sum(len(output.token_ids) for output in result.outputs)
        usage_info = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )

        if isinstance(request, ChatCompletionRequest):
            choices = []
            for output in result.outputs:
                response = template.generate_ids_to_response(output.token_ids)
                action, action_input = split_action_action_input(response)
                toolcall = None
                if action is not None:
                    toolcall = ChatCompletionMessageToolCall(
                        id=f'toolcall-{random_uuid()}',
                        type='function',
                        function=Function(name=action, arguments=action_input))
                choice = ChatCompletionResponseChoice(
                    index=output.index,
                    message=ChatMessage(role='assistant', content=response, tool_calls=toolcall),
                    finish_reason=output.finish_reason,
                )
                choices.append(choice)
            response = ChatCompletionResponse(
                model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
        else:
            choices = []
            for output in result.outputs:
                response = template.generate_ids_to_response(output.token_ids)
                choice = CompletionResponseChoice(
                    index=output.index,
                    text=response,
                    finish_reason=output.finish_reason,
                )
                choices.append(choice)
            response = CompletionResponse(
                model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
        return response

    async def _generate_stream():
        print_idx_list = [[0] for _ in range(request.n)]
        total_res = ['' for _ in range(request.n)]
        async for result in result_generator:
            num_prompt_tokens = len(result.prompt_token_ids)
            num_generated_tokens = sum(len(output.token_ids) for output in result.outputs)
            usage_info = UsageInfo(
                prompt_tokens=num_prompt_tokens,
                completion_tokens=num_generated_tokens,
                total_tokens=num_prompt_tokens + num_generated_tokens,
            )
            for output in result.outputs:
                output.delta_text = template.generate_ids_to_response(
                    output.token_ids, output.finished(), return_delta=True, print_idx=print_idx_list[output.index])
                total_res[output.index] += output.delta_text
            if isinstance(request, ChatCompletionRequest):
                choices = []
                for output in result.outputs:
                    toolcall = None
                    if output.finish_reason is not None:
                        action, action_input = split_action_action_input(total_res[output.index])
                        if action is not None:
                            toolcall = ChatCompletionMessageToolCall(
                                id=f'toolcall-{random_uuid()}',
                                type='function',
                                function=Function(name=action, arguments=action_input))
                    choice = ChatCompletionResponseStreamChoice(
                        index=output.index,
                        delta=DeltaMessage(role='assistant', content=output.delta_text, tool_calls=toolcall),
                        finish_reason=output.finish_reason)
                    choices.append(choice)
                response = ChatCompletionStreamResponse(
                    model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
            else:
                choices = []
                for output in result.outputs:
                    choice = CompletionResponseStreamChoice(
                        index=output.index, text=output.delta_text, finish_reason=output.finish_reason)
                    choices.append(choice)
                response = CompletionStreamResponse(
                    model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
            yield f'data:{json.dumps(asdict(response), ensure_ascii=False)}\n\n'
        yield 'data:[DONE]\n\n'

    if request.stream:
        return StreamingResponse(_generate_stream())
    else:
        return await _generate_full()


class _GenerationConfig(GenerationConfig):

    def __repr__(self) -> str:
        parameters = inspect.signature(self.to_json_string).parameters
        kwargs = {}
        if 'ignore_metadata' in parameters:
            kwargs['ignore_metadata'] = True
        gen_kwargs = json.loads(self.to_json_string(**kwargs))
        gen_kwargs.pop('transformers_version', None)
        return f'GenerationConfig({gen_kwargs})'


@torch.inference_mode()
async def inference_pt_async(request: Union[ChatCompletionRequest, CompletionRequest], raw_request: Request):
    global model, template
    error_msg = await check_model(request)
    if error_msg is not None:
        return create_error_response(HTTPStatus.BAD_REQUEST, error_msg)

    if request.seed is not None:
        seed_everything(request.seed, verbose=False)
    _request = {'model': request.model}
    if isinstance(request, ChatCompletionRequest):
        if is_generation_template(template.template_type):
            return create_error_response(
                HTTPStatus.BAD_REQUEST, f'The chat template `{template.template_type}` corresponding to '
                f'the model `{model.model_type}` is in text generation format. '
                'Please use the `completions` API.')
        messages = request.messages
        # For agent, check if response is endwith observations and join tool observation
        messages_join_observation(messages)
        images = request.images
        if _args.is_multimodal:
            messages = decode_base64(messages=messages)['messages']
            images = decode_base64(images=images)['images']
        example = messages_to_history(messages)
        if len(images) > 0:
            example['images'] = images

        if request.tool_choice is not None and request.tools is not None:
            if isinstance(request.tool_choice, dict):
                name = request.tool_choice['function']['name']
                tool = next((t for t in request.tools if t['function']['name'] == name), None)
                if tool is None:
                    raise ValueError(f"Tool choice '{name}' not found in tools.")
                example['tools'] = [tool]
            elif request.tool_choice == 'auto':
                example['tools'] = request.tools

        input_ids = template.encode(example)[0]['input_ids']
        request_id = f'chatcmpl-{random_uuid()}'
        _request['messages'] = messages
    else:
        if not is_generation_template(template.template_type):
            return create_error_response(
                HTTPStatus.BAD_REQUEST, f'The chat template `{template.template_type}` corresponding to '
                f'the model `{model.model_type}` is in chat format. '
                'Please use the `chat.completions` API.')
        prompt = request.prompt
        images = request.images
        if _args.is_multimodal:
            prompt = decode_base64(prompt=prompt)['prompt']
            images = decode_base64(images=images)['images']
        example = {'query': prompt}
        if len(images) > 0:
            example['images'] = images
        input_ids = template.encode(example)[0]['input_ids']
        request_id = f'cmpl-{random_uuid()}'
        _request['prompt'] = prompt

    request_info = {'request_id': request_id}
    request_info.update(_request)

    error_msg = await check_length(request, input_ids)
    if error_msg is not None:
        return create_error_response(HTTPStatus.BAD_REQUEST, error_msg)

    kwargs = {'max_new_tokens': request.max_tokens}
    # not use: 'n', 'best_of', 'frequency_penalty', 'presence_penalty'
    for key in ['length_penalty', 'num_beams']:
        kwargs[key] = getattr(request, key)
    for key in ['temperature', 'top_k', 'top_p', 'repetition_penalty']:
        new_value = getattr(request, key)
        if new_value is None:
            kwargs[key] = getattr(model.generation_config, key)
        else:
            kwargs[key] = new_value
    if kwargs['temperature'] == 0:
        kwargs['do_sample'] = False
        kwargs['temperature'] = 1
        kwargs['top_p'] = 1
        kwargs['top_k'] = 50
    else:
        kwargs['do_sample'] = True

    generation_config = _GenerationConfig(**kwargs)
    request_info['generation_config'] = generation_config
    request_info.update({'seed': request.seed, 'stop': request.stop, 'stream': request.stream})
    logger.info(request_info)

    created_time = int(time.time())
    adapter_kwargs = {}
    if request.model != _args.model_type:
        adapter_names = None
        for lora_req in _args.lora_request_list:
            if lora_req.lora_name == request.model:
                adapter_names = request.model
                break
        assert adapter_names is not None
        adapter_kwargs['adapter_names'] = [adapter_names]
    elif isinstance(model, PeftModel):
        adapter_kwargs['adapter_names'] = ['-']

    async def _generate_full():
        generation_info = {}
        response, _ = inference(
            model,
            template,
            **example,
            stop_words=request.stop,
            generation_config=generation_config,
            generation_info=generation_info,
            **adapter_kwargs)
        num_prompt_tokens = generation_info['num_prompt_tokens']
        num_generated_tokens = generation_info['num_generated_tokens']
        usage_info = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        if isinstance(request, ChatCompletionRequest):
            action, action_input = split_action_action_input(response)
            toolcall = None
            if action is not None:
                toolcall = ChatCompletionMessageToolCall(
                    id=f'toolcall-{random_uuid()}',
                    type='function',
                    function=Function(name=action, arguments=action_input))
            choices = [
                ChatCompletionResponseChoice(
                    index=0,
                    message=ChatMessage(role='assistant', content=response, tool_calls=toolcall),
                    finish_reason=None,
                )
            ]
            response = ChatCompletionResponse(
                model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
        else:
            choices = [CompletionResponseChoice(
                index=0,
                text=response,
                finish_reason=None,
            )]
            response = CompletionResponse(
                model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
        return response

    def _generate_stream():
        generation_info = {}
        gen = inference_stream(
            model,
            template,
            **example,
            stop_words=request.stop,
            generation_config=generation_config,
            generation_info=generation_info,
            **adapter_kwargs)

        print_idx = 0
        total_res = ''
        is_finished = False
        while not is_finished:
            try:
                response, _ = next(gen)
            except StopIteration:
                is_finished = True
            num_prompt_tokens = generation_info['num_prompt_tokens']
            num_generated_tokens = generation_info['num_generated_tokens']
            usage_info = UsageInfo(
                prompt_tokens=num_prompt_tokens,
                completion_tokens=num_generated_tokens,
                total_tokens=num_prompt_tokens + num_generated_tokens,
            )
            if isinstance(request, ChatCompletionRequest):
                delta_text = response[print_idx:]
                print_idx = len(response)
                toolcall = None
                if is_finished:
                    action, action_input = split_action_action_input(total_res)
                    if action:
                        toolcall = ChatCompletionMessageToolCall(
                            id=f'toolcall-{random_uuid()}',
                            type='function',
                            function=Function(name=action, arguments=action_input))
                choices = [
                    ChatCompletionResponseStreamChoice(
                        index=0,
                        delta=DeltaMessage(role='assistant', content=delta_text, tool_calls=toolcall),
                        finish_reason=None)
                ]
                resp = ChatCompletionStreamResponse(
                    model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
            else:
                delta_text = response[print_idx:]
                print_idx = len(response)
                choices = [CompletionResponseStreamChoice(index=0, text=delta_text, finish_reason=None)]
                resp = CompletionStreamResponse(
                    model=request.model, choices=choices, usage=usage_info, id=request_id, created=created_time)
            yield f'data:{json.dumps(asdict(resp), ensure_ascii=False)}\n\n'
        yield 'data:[DONE]\n\n'

    if request.stream:
        return StreamingResponse(_generate_stream())
    else:
        return await _generate_full()


@app.post('/v1/chat/completions')
async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request) -> ChatCompletionResponse:
    global _args
    assert _args is not None
    if _args.infer_backend == 'vllm':
        return await inference_vllm_async(request, raw_request)
    else:
        return await inference_pt_async(request, raw_request)


@app.post('/v1/completions')
async def create_completion(request: CompletionRequest, raw_request: Request) -> CompletionResponse:
    global _args
    assert _args is not None
    if _args.infer_backend == 'vllm':
        return await inference_vllm_async(request, raw_request)
    else:
        return await inference_pt_async(request, raw_request)


def llm_deploy(args: DeployArguments) -> None:
    logger.info(f'args: {args}')
    seed_everything(args.seed)
    logger_format = logging.Formatter('%(levelname)s: %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    logger.handlers[0].setFormatter(logger_format)
    import uvicorn
    global llm_engine, model, template, _args
    _args = args
    if args.merge_lora:
        merge_lora(args, device_map=args.merge_device_map)
    if args.infer_backend == 'vllm':
        from .utils import prepare_vllm_engine_template
        llm_engine, template = prepare_vllm_engine_template(args, use_async=True)
    else:
        model, template = prepare_model_template(args)
    uvicorn.run(app, host=args.host, port=args.port, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile)


deploy_main = get_main(DeployArguments, llm_deploy)