mutlimodal-deployment.md 19.5 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# Mutlimoda LLM Deployment

## Table of Contents
- [Environment Setup](#environment-setup)
- [qwen-vl-chat](#qwen-vl-chat)
- [yi-vl-6b-chat](#yi-vl-6b-chat)
- [minicpm-v-v2_5-chat](#minicpm-v-v2_5-chat)
- [qwen-vl](#qwen-vl)

## Environment Setup
```shell
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'

pip install vllm
```

Here we provide examples of four models (selecting smaller-sized models to facilitate experiments): qwen-vl-chat, qwen-vl, yi-vl-6b-chat, and minicpm-v-v2_5-chat. From these examples, you can identify three different types of MLLMs: a single round of dialogue can contain multiple images (or no images), a single round of dialogue can only contain one image, and the way the entire dialogue revolves around an image and the differences in deployment and invocation methods, as well as the differences between the chat and base models within MLLMs.

If you're using qwen-audio-chat, simply replace the `<img>` tag with `<audio>` based on the qwen-vl-chat example.

## qwen-vl-chat

**Server**:
```bash
# Using the original model
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen-vl-chat

# Using the fine-tuned LoRA
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/qwen-vl-chat/vx-xxx/checkpoint-xxx

# Using the fine-tuned Merge LoRA model
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/qwen-vl-chat/vx-xxx/checkpoint-xxx-merged
```

**Client**:

Test:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-vl-chat",
"messages": [{"role": "user", "content": "Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>\nWhat kind of flower is in the picture and how many are there?"}],
"max_tokens": 256,
"temperature": 0
}'
```

Using swift:
```python
from swift.llm import get_model_list_client, XRequestConfig, inference_client

model_list = get_model_list_client()
model_type = model_list.data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('rose.jpg', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# query = f"""Picture 1:<img>{img_base64}</img>
# What kind of flower is in the picture and how many are there?"""

# use local_path
# query = """Picture 1:<img>rose.jpg</img>
# What kind of flower is in the picture and how many are there?"""

# use url
query = """Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
What kind of flower is in the picture and how many are there?"""

request_config = XRequestConfig(seed=42)
resp = inference_client(model_type, query, request_config=request_config)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

history = [(query, response)]
query = 'Box out the flowers in the picture.'
request_config = XRequestConfig(stream=True, seed=42)
stream_resp = inference_client(model_type, query, history, request_config=request_config)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""
model_type: qwen-vl-chat
query: Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
What kind of flower is in the picture and how many are there?
response: There are three roses in the picture.
query: Box out the flowers in the picture.
response: <ref> flowers</ref><box>(33,448),(360,979)</box>
"""
```

Using openai:
```python
from openai import OpenAI
client = OpenAI(
    api_key='EMPTY',
    base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('rose.jpg', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# query = f"""Picture 1:<img>{img_base64}</img>
# What kind of flower is in the picture and how many are there?"""

# use local_path
# from swift.llm import convert_to_base64
# query = """Picture 1:<img>rose.jpg</img>
# What kind of flower is in the picture and how many are there?"""
# query = convert_to_base64(prompt=query)['prompt']

# use url
query = """Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
What kind of flower is in the picture and how many are there?"""

messages = [{
    'role': 'user',
    'content': query
}]
resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    seed=42)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

# Streaming
messages.append({'role': 'assistant', 'content': response})
query = 'Box out the flowers in the picture.'
messages.append({'role': 'user', 'content': query})
stream_resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    stream=True,
    seed=42)

print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""Out[0]
model_type: qwen-vl-chat
query: Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
What kind of flower is in the picture and how many are there?
response: There are three roses in the picture.
query: Box out the flowers in the picture.
response: <ref> flowers</ref><box>(33,448),(360,979)</box>
"""
```

## yi-vl-6b-chat

**Server side:**
```bash
# Using the original model
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type yi-vl-6b-chat

# Using the fine-tuned LoRA
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/yi-vl-6b-chat/vx-xxx/checkpoint-xxx

# Using the fine-tuned Merge LoRA model
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/yi-vl-6b-chat/vx-xxx/checkpoint-xxx-merged
```

**Client side:**

Test:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "yi-vl-6b-chat",
"messages": [{"role": "user", "content": "Describe this image."}],
"seed": 42,
"images": ["http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png"]
}'
```

Using swift:
```python
from swift.llm import get_model_list_client, XRequestConfig, inference_client

model_list = get_model_list_client()
model_type = model_list.data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('cat.png', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# images = [img_base64]

# use local_path
# from swift.llm import convert_to_base64
# images = ['cat.png']
# images = convert_to_base64(images=images)['images']

# use url
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png']

query = 'Describe this image.'
request_config = XRequestConfig(seed=42)
resp = inference_client(model_type, query, images=images, request_config=request_config)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

history = [(query, response)]
query = 'How many sheep are in the picture?'
images.append('http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/animal.png')
request_config = XRequestConfig(stream=True, seed=42)
stream_resp = inference_client(model_type, query, history, images=images, request_config=request_config)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""
model_type: yi-vl-6b-chat
query: Describe this image.
response: The image captures a moment of tranquility featuring a gray and white kitten. The kitten, with its eyes wide open, is the main subject of the image. Its nose is pink, adding a touch of color to its gray and white fur. The kitten is sitting on a white surface, which contrasts with its gray and white fur. The background is blurred, drawing focus to the kitten. The image does not contain any text. The kitten's position relative to the background suggests it is in the foreground of the image. The image does not contain any other objects or creatures. The kitten appears to be alone in the image. The image does not contain any action, but the kitten's wide-open eyes give a sense of curiosity and alertness. The image does not contain any aesthetic descriptions. The image is a simple yet captivating portrait of a gray and white kitten.
query: How many sheep are in the picture?
response: There are four sheep in the picture.
"""
```

Using openai:
```python
from openai import OpenAI
client = OpenAI(
    api_key='EMPTY',
    base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('cat.png', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# images = [img_base64]

# use local_path
# from swift.llm import convert_to_base64
# images = ['cat.png']
# images = convert_to_base64(images=images)['images']

# use url
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png']

query = 'Describe this image.'
messages = [{
    'role': 'user',
    'content': query
}]
resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    seed=42,
    extra_body={'images': images})
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

# Streaming
messages.append({'role': 'assistant', 'content': response})
query = 'How many sheep are in the picture?'
images.append('http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/animal.png')
messages.append({'role': 'user', 'content': query})
stream_resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    stream=True,
    seed=42,
    extra_body={'images': images})

print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""
model_type: yi-vl-6b-chat
query: Describe this image.
response: The image captures a moment of tranquility featuring a gray and white kitten. The kitten, with its eyes wide open, is the main subject of the image. Its nose is pink, adding a touch of color to its gray and white fur. The kitten is sitting on a white surface, which contrasts with its gray and white fur. The background is blurred, drawing focus to the kitten. The image does not contain any text. The kitten's position relative to the background suggests it is in the foreground of the image. The image does not contain any other objects or creatures. The kitten appears to be alone in the image. The image does not contain any action, but the kitten's wide-open eyes give a sense of curiosity and alertness. The image does not contain any aesthetic descriptions. The image is a simple yet captivating portrait of a gray and white kitten.
query: How many sheep are in the picture?
response: There are four sheep in the picture.
"""
```

## minicpm-v-v2_5-chat

**Server side:**
```bash
# Using the original model
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type minicpm-v-v2_5-chat

# Using the fine-tuned LoRA
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/minicpm-v-v2_5-chat/vx-xxx/checkpoint-xxx

# Using the fine-tuned Merge LoRA model
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/minicpm-v-v2_5-chat/vx-xxx/checkpoint-xxx-merged
```

**Client side:**

Test:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "minicpm-v-v2_5-chat",
"messages": [{"role": "user", "content": "Describe this image."}],
"temperature": 0,
"images": ["http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png"]
}'
```

Using swift:
```python
from swift.llm import get_model_list_client, XRequestConfig, inference_client

model_list = get_model_list_client()
model_type = model_list.data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('cat.png', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# images = [img_base64]

# use local_path
# from swift.llm import convert_to_base64
# images = ['cat.png']
# images = convert_to_base64(images=images)['images']

# use url
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png']

query = 'Describe this image.'
request_config = XRequestConfig(temperature=0)
resp = inference_client(model_type, query, images=images, request_config=request_config)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

history = [(query, response)]
query = 'How was this picture generated?'
request_config = XRequestConfig(stream=True, temperature=0)
stream_resp = inference_client(model_type, query, history, images=images, request_config=request_config)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""
model_type: minicpm-v-v2_5-chat
query: Describe this image.
response: The image is a digital painting of a kitten, which is the main subject. The kitten's fur is rendered with a mix of gray, black, and white, giving it a realistic appearance. Its eyes are wide open, and the expression is one of curiosity or alertness. The background is blurred, which brings the focus entirely on the kitten. The painting style is detailed and lifelike, capturing the essence of a young feline's innocent and playful nature. The image does not convey any specific context or background story beyond the depiction of the kitten itself.
query: How was this picture generated?
response: This picture was generated using digital art techniques. The artist likely used a software program to create the image, manipulating pixels and colors to achieve the detailed and lifelike representation of the kitten. Digital art allows for a high degree of control over the final product, enabling artists to fine-tune details and create realistic textures and shading.
"""
```

Using openai:
```python
from openai import OpenAI
client = OpenAI(
    api_key='EMPTY',
    base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('cat.png', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# images = [img_base64]

# use local_path
# from swift.llm import convert_to_base64
# images = ['cat.png']
# images = convert_to_base64(images=images)['images']

# use url
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png']

query = 'Describe this image.'
messages = [{
    'role': 'user',
    'content': query
}]
resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    temperature=0,
    extra_body={'images': images})
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

# Streaming
messages.append({'role': 'assistant', 'content': response})
query = 'How was this picture generated?'
messages.append({'role': 'user', 'content': query})
stream_resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    stream=True,
    temperature=0,
    extra_body={'images': images})

print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""
model_type: minicpm-v-v2_5-chat
query: Describe this image.
response: The image is a digital painting of a kitten, which is the main subject. The kitten's fur is rendered with a mix of gray, black, and white, giving it a realistic appearance. Its eyes are wide open, and the expression is one of curiosity or alertness. The background is blurred, which brings the focus entirely on the kitten. The painting style is detailed and lifelike, capturing the essence of a young feline's innocent and playful nature. The image does not convey any specific context or background story beyond the depiction of the kitten itself.
query: How was this picture generated?
response: This picture was generated using digital art techniques. The artist likely used a software program to create the image, manipulating pixels and colors to achieve the detailed and lifelike representation of the kitten. Digital art allows for a high degree of control over the final product, enabling artists to fine-tune details and create realistic textures and shading.
"""
```

## qwen-vl

**Server side:**
```bash
# Using the original model
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen-vl

# Using the fine-tuned LoRA
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/qwen-vl/vx-xxx/checkpoint-xxx

# Using the fine-tuned Merge LoRA model
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir output/qwen-vl/vx-xxx/checkpoint-xxx-merged
```

**Client side:**

Test:
```bash
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-vl",
"prompt": "Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>\nThis is a",
"max_tokens": 32,
"temperature": 0
}'
```

Using swift:
```python
from swift.llm import get_model_list_client, XRequestConfig, inference_client

model_list = get_model_list_client()
model_type = model_list.data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('rose.jpg', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# query = f"""Picture 1:<img>{img_base64}</img>
# This is a"""

# use local_path
# query = """Picture 1:<img>rose.jpg</img>
# This is a"""

# use url
query = """Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
This is a"""

request_config = XRequestConfig(seed=42, max_tokens=32)
resp = inference_client(model_type, query, request_config=request_config)
response = resp.choices[0].text
print(f'query: {query}')
print(f'response: {response}')

request_config = XRequestConfig(stream=True, seed=42, max_tokens=32)
stream_resp = inference_client(model_type, query, request_config=request_config)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].text, end='', flush=True)
print()

"""
model_type: qwen-vl
query: Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
This is a
response:  picture of a bouquet of roses.
query: Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
This is a
response: picture of a bouquet of roses.
"""
```

Using openai:
```python
from openai import OpenAI
client = OpenAI(
    api_key='EMPTY',
    base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')

# use base64
# import base64
# with open('rose.jpg', 'rb') as f:
#     img_base64 = base64.b64encode(f.read()).decode('utf-8')
# query = f"""Picture 1:<img>{img_base64}</img>
# This is a"""

# use local_path
# from swift.llm import convert_to_base64
# query = """Picture 1:<img>rose.jpg</img>
# This is a"""
# query = convert_to_base64(prompt=query)['prompt']

# use url
query = """Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
This is a"""

resp = client.completions.create(
    model=model_type,
    prompt=query,
    seed=42)
response = resp.choices[0].text
print(f'query: {query}')
print(f'response: {response}')

# Streaming
stream_resp = client.completions.create(
    model=model_type,
    prompt=query,
    stream=True,
    seed=42)

print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].text, end='', flush=True)
print()

"""Out[0]
model_type: qwen-vl
query: Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
This is a
response:  picture of a bouquet of roses.
query: Picture 1:<img>https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/rose.jpg</img>
This is a
response: picture of a bouquet of roses.
"""
```