README.md 56.7 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# SWIFT (Scalable lightWeight Infrastructure for Fine-Tuning)

<p align="center">
    <br>
    <img src="resources/banner.png"/>
    <br>
<p>
<p align="center">
<a href="https://modelscope.cn/home">ModelScope Community Website</a>
<br>
        <a href="README_CN.md">中文</a> &nbsp | &nbsp English &nbsp
</p>

<p align="center">
<img src="https://img.shields.io/badge/python-%E2%89%A53.8-5be.svg">
<img src="https://img.shields.io/badge/pytorch-%E2%89%A51.12%20%7C%20%E2%89%A52.0-orange.svg">
<a href="https://github.com/modelscope/modelscope/"><img src="https://img.shields.io/badge/modelscope-%E2%89%A51.9.5-5D91D4.svg"></a>
<a href="https://pypi.org/project/ms-swift/"><img src="https://badge.fury.io/py/ms-swift.svg"></a>
<a href="https://github.com/modelscope/swift/blob/main/LICENSE"><img src="https://img.shields.io/github/license/modelscope/swift"></a>
<a href="https://pepy.tech/project/ms-swift"><img src="https://pepy.tech/badge/ms-swift"></a>
<a href="https://github.com/modelscope/swift/pulls"><img src="https://img.shields.io/badge/PR-welcome-55EB99.svg"></a>
</p>

<p align="center">
<a href="https://trendshift.io/repositories/6427" target="_blank"><img src="https://trendshift.io/api/badge/repositories/6427" alt="modelscope%2Fswift | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>

## 📖 Table of Contents
- [Introduction](#-introduction)
- [News](#-news)
- [Installation](#%EF%B8%8F-installation)
- [Getting Started](#-getting-started)
- [Documentation](#-documentation)
- [License](#-License)
- [Citation](#-citation)
- [WeChat Group](#-Wechat-Group)

## 📝 Introduction
SWIFT supports training, inference, evaluation and deployment of nearly **200 LLMs and MLLMs** (multimodal large models). Developers can directly apply our framework to their own research and production environments to realize the complete workflow from model training and evaluation to application. In addition to supporting the lightweight training solutions provided by [PEFT](https://github.com/huggingface/peft), we also provide a complete **Adapters library** to support the latest training techniques such as NEFTune, LoRA+, LLaMA-PRO, etc. This adapter library can be used directly in your own custom workflow without our training scripts.

To facilitate use by users unfamiliar with deep learning, we provide a Gradio web-ui for controlling training and inference, as well as accompanying deep learning courses and best practices for beginners.

Additionally, we are expanding capabilities for other modalities. Currently, we support full-parameter training and LoRA training for AnimateDiff.

SWIFT has rich documentations for users, please check [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM).

SWIFT web-ui is available both on [Huggingface space](https://huggingface.co/spaces/tastelikefeet/swift) and [ModelScope studio](https://www.modelscope.cn/studios/iic/Scalable-lightWeight-Infrastructure-for-Fine-Tuning/summary), please feel free to try!

## 🎉 News
- 2024.06.11: Support for tool-calling agent deployment that conform to the OpenAI interface.You can refer to [Agent deployment best practice](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/Agent-deployment-best-practice.md)
- 🔥2024.06.07: Support **Qwen2** series LLM, including Base and Instruct models of 0.5B, 1.5B, 7B, and 72B, as well as corresponding quantized versions gptq-int4, gptq-int8, and awq-int4. The best practice for self-cognition fine-tuning, inference and deployment of Qwen2-72B-Instruct using dual-card 80GiB A100 can be found [here](https://github.com/modelscope/swift/issues/1092).
- 🔥2024.06.05: Support for **glm4** series LLM and glm4v-9b-chat MLLM. You can refer to [glm4v best practice](docs/source_en/Multi-Modal/glm4v-best-practice.md).
- 🔥2024.06.01: Supoprts **SimPO** training! See [document](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/SimPO.md) to start training!
- 🔥2024.06.01: Support for deploying large multimodal models, please refer to the [Multimodal Deployment Documentation](docs/source_en/Multi-Modal/mutlimodal-deployment.md) for more information.
- 2024.05.31: Supports Mini-Internvl model, Use model_type `mini-internvl-chat-2b-v1_5` and `mini-internvl-chat-4b-v1_5`to train.
- 2024.05.24: Supports Phi3-vision model, Use model_type `phi3-vision-128k-instruct` to train.
- 2024.05.22: Supports DeepSeek-V2-Lite series models, model_type are `deepseek-v2-lite` and `deepseek-v2-lite-chat`
- 2024.05.22: Supports TeleChat-12B-v2 model with quantized version, model_type are `telechat-12b-v2` and `telechat-12b-v2-gptq-int4`
- 🔥2024.05.21: Inference and fine-tuning support for MiniCPM-Llama3-V-2_5 are now available. For more details, please refer to [minicpm-v-2.5 Best Practice](docs/source/Multi-Modal/minicpm-v-2.5最佳实践.md).
- 🔥2024.05.20: Support for inferencing and fine-tuning cogvlm2-llama3-chinese-chat-19B, cogvlm2-llama3-chat-19B. you can refer to [cogvlm2 Best Practice](docs/source_en/Multi-Modal/cogvlm2-best-practice.md).
- 🔥2024.05.17: Support peft=0.11.0. Meanwhile support 3 new tuners: `BOFT`, `Vera` and `Pissa`. use `--sft_type boft/vera` to use BOFT or Vera, use `--init_lora_weights pissa` with `--sft_type lora` to use Pissa.
- 2024.05.16: Supports Llava-Next (Stronger) series models. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
- 🔥2024.05.13: Support Yi-1.5 series models,use `--model_type yi-1_5-9b-chat` to begin!
- 2024.05.11: Support for qlora training and quantized inference using [hqq](https://github.com/mobiusml/hqq) and [eetq](https://github.com/NetEase-FuXi/EETQ). For more information, see the [LLM Quantization Documentation](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/LLM-quantization.md).
- 2024.05.10: Support split a sequence to multiple GPUs to reduce memory usage. Use this feature by `pip install .[seq_parallel]`, then add `--sequence_parallel_size n` to your DDP script to begin!
- 2024.05.08: Support DeepSeek-V2-Chat model, you can refer to [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/deepseek-v2-chat/lora_ddp_ds3/sft.sh).Support InternVL-Chat-V1.5-Int8 model, for best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/internvl-best-practice.md).
- 🔥2024.05.07: Supoprts **ORPO** training! See [document](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/ORPO.md) to start training!
- 2024.05.07: Supports Llava-Llama3 model from xtuner,model_type is `llava-llama-3-8b-v1_1`.
- 2024.04.29: Supports inference and fine-tuning of InternVL-Chat-V1.5 model. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/internvl-best-practice.md).
- 🔥2024.04.26: Support **LISA** and **unsloth** training! Specify `--lisa_activated_layers=2` to use LISA(to reduce the memory cost to 30 percent!), specify `--tuner_backend unsloth` to use unsloth to train a huge model(full or lora) with lesser memory(30 percent or lesser) and faster speed(5x)!
- 🔥2024.04.26: Support the fine-tuning and inference of Qwen1.5-110B and Qwen1.5-110B-Chat model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_110b_chat/lora_ddp_ds/sft.sh) to start training!
<details><summary>More</summary>

- 2024.04.24: Support for inference and fine-tuning of Phi3 series models. Including: [phi3-4b-4k-instruct](examples/pytorch/llm/scripts/phi3_4b_4k_instruct/lora), phi3-4b-128k-instruct.
- 2024.04.22: Support for inference, fine-tuning, and deployment of **chinese-llama-alpaca-2** series models. This includes:chinese-llama-2-1.3b, chinese-llama-2-7b, chinese-llama-2-13b, chinese-alpaca-2-1.3b, chinese-alpaca-2-7b and chinese-alpaca-2-13b along with their corresponding 16k and 64k long text versions.
- 2024.04.22: Support for inference and fine-tuning of Llama3 GPTQ-Int4, GPTQ-Int8, and AWQ series models. Support for inference and fine-tuning of chatglm3-6b-128k, Openbuddy-Llama3.
- 2024.04.20: Support for inference, fine-tuning, and deployment of **Atom** series models. This includes: Atom-7B and Atom-7B-Chat. use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/atom_7b_chat/lora/sft.sh) to train.
- 2024.04.19: Support for single-card, DDP, ZeRO2, and ZeRO3 training and inference with NPU, please refer to [NPU Inference and Fine-tuning Best Practice](docs/source_en/LLM/NPU-best-practice.md).
- 2024.04.19: Support for inference, fine-tuning, and deployment of **Llama3** series models. This includes: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B, and Llama-3-70B-Instruct. use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/sft.sh) to train.
- 2024.04.18: Supported models: wizardlm2-7b-awq, wizardlm2-8x22b, yi-6b-chat-awq, yi-6b-chat-int8, yi-34b-chat-awq, yi-34b-chat-int8. Supported `--deepspeed zero3-offload` and provided default zero3-offload configuration file for zero3+cpu offload usage.
- 2024.04.18: Supported compatibility with HuggingFace ecosystem using the environment variable `USE_HF`, switching to use models and datasets from HF. Please refer to the [HuggingFace ecosystem compatibility documentation](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Compat-HF.md).
- 2024.04.17: Support the evaluation for OpenAI standard interfaces. Check the [parameter documentation](docs/source_en/LLM/Command-line-parameters.md#eval-parameters) for details.
- 🔥2024.04.17: Support **CodeQwen1.5-7B** series: CodeQwen1.5-7B, CodeQwen1.5-7B-Chat,CodeQwen1.5-7B-Chat-AWQ, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/codeqwen1half_7b_chat/lora/sft.sh) to train.
- 2024.04.16: Supports inference and fine-tuning of llava-v1.6-34b model. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
- 2024.04.13: Support the fine-tuning and inference of Mixtral-8x22B-v0.1 model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/sft.sh) to start training!
- 2024.04.13: Support the newly launched **MiniCPM** series: MiniCPM-V-2.0、MiniCPM-2B-128k、MiniCPM-MoE-8x2B and MiniCPM-1B.use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/sft.sh) to start training!
- 🔥2024.04.11: Support Model Evaluation with MMLU/ARC/CEval datasets(also user custom eval datasets) with one command! Check [this documentation](docs/source_en/LLM/LLM-eval.md) for details. Meanwhile, we support a trick way to do multiple ablation experiments, check [this documentation](docs/source_en/LLM/LLM-exp.md) to use.
- 🔥2024.04.11: Support **c4ai-command-r** series: c4ai-command-r-plus, c4ai-command-r-v01, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/c4ai_command_r_plus/lora_mp/sft.sh) to train.
- 2024.04.10: Use SWIFT to fine-tune the qwen-7b-chat model to enhance its function call capabilities, and combine it with [Modelscope-Agent](https://github.com/modelscope/modelscope-agent) for best practices, which can be found [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Agent-best-practice.md#Usage-with-Modelscope_Agent).
- 🔥2024.04.09: Support ruozhiba dataset. Search `ruozhiba` in [this documentation](docs/source_en/LLM/Supported-models-datasets.md) to begin training!
- 2024.04.08: Support the fine-tuning and inference of XVERSE-MoE-A4.2B model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/xverse_moe_a4_2b/lora/sft.sh) to start training!
- 2024.04.04: Support **QLoRA+FSDP** to train a 70B model with two 24G memory GPUs, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh) to train.
- 🔥2024.04.03: Support **Qwen1.5-32B** series: Qwen1.5-32B, Qwen1.5-32B-Chat, Qwen1.5-32B-Chat-GPTQ-Int4.use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_32b_chat/lora_mp/sft.sh) to start training!
- 🔥2024.04.02: Support the fine-tuning and inference of Mengzi3-13B-Base model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/sft.sh) to start training!
- 🔥2024.04.01: Support **dbrx** series: dbrx-base and dbrx-instruct, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/dbrx-instruct/lora_mp/sft.sh) to start training!
- 🔥2024.03.29: Support **Qwen1.5-MoE** series: Qwen1.5-MoE-A2.7B, Qwen1.5-MoE-A2.7B-Chat, Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4.
- 🔥2024.03.29: Support the fine-tuning and inference of **Grok-1** 300B MoE, please view details [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Grok-1-best-practice.md).
- 🔥2024.03.25: Supports inference and fine-tuning of TeleChat-7b and TeleChat-12b model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/telechat_12b/lora/sft.sh) to start training!
- 🔥2024.03.20: Supports inference and fine-tuning for the **llava** series. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
- 🔥2024.03.12: Support inference and fine-tuning for **deepseek-vl** series. Best practices can be found [here](docs/source_en/Multi-Modal/deepseek-vl-best-practice.md).
- 🔥2024.03.11: Support [GaLore](https://arxiv.org/abs/2403.03507) for effectively reducing memory usage to 1/2 of the original in full-parameter training.
- 🔥2024.03.10: [End-to-end best practices](docs/source_en/LLM/Qwen1.5-best-practice.md) from fine-tuning to deployment for Qwen1.5-7B-Chat and Qwen1.5-72B-Chat.
- 🔥2024.03.09: Support training and inference of MAMBA model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/mamba-1.4b/lora/sft.sh) to start training!
- 2024.03.09: Support training and inference of AQLM quantized model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/sft.sh) to start training!
- 2024.03.06: Support training and inference of AWQ quantized model, use [this Qwen1.5-AWQ model script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_7b_chat_awq/lora/sft.sh) to start training, and support training and inference of [yi-9b](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/yi_9b/lora_zero3).
- 🔥2024.02.29: Support [LLaMA PRO](https://arxiv.org/pdf/2401.02415.pdf), simply use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/yi_6b_chat/llamapro/sft.sh) to start training.
- 🔥2024.02.29: Support [LoRA+](https://arxiv.org/pdf/2402.12354.pdf), simply use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/yi_6b_chat/lorap/sft.sh) to start training.
- 2024.02.25: Support `swift export` to quantize models using **AWQ/GPTQ** and push to ModelScope Hub. See documentation: [LLM Quantization](docs/source_en/LLM/LLM-quantization.md).
- 2024.02.22: Support gemma series: gemma-2b, [gemma-2b-instruct](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/gemma_2b_instruct), gemma-7b, gemma-7b-instruct.
- 2024.02.16: Support deepseek-math series: deepseek-math-7b, deepseek-math-7b-instruct, deepseek-math-7b-chat.
- 🔥2024.02.05: Support **Qwen1.5** series models, see [model list](https://github.com/modelscope/swift/blob/main/docs/source/LLM/%E6%94%AF%E6%8C%81%E7%9A%84%E6%A8%A1%E5%9E%8B%E5%92%8C%E6%95%B0%E6%8D%AE%E9%9B%86.md#%E6%A8%A1%E5%9E%8B) for all supported Qwen1.5 models. Provide fine-tuning scripts for [qwen1half-7b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen1half_7b_chat), [qwen1half-7b-chat-int8](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen1half_7b_chat_int8).
- 2024.02.05: Support training of diffusion models such as **SDXL**, **SD**, **ControlNet**, as well as **DreamBooth** training. See corresponding [training scripts](https://github.com/modelscope/swift/tree/main/examples/pytorch/sdxl/scripts) for details.
- 2024.02.01: Support minicpm series: [minicpm-2b-sft-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/minicpm_2b_sft_chat), minicpm-2b-chat.
- 🔥2024.02.01: Support dataset mixing to reduce **catastrophic forgetting**. Use `--train_dataset_mix_ratio 2.0` to enable training! We also open sourced the general knowledge dataset [ms-bench](https://www.modelscope.cn/datasets/iic/ms_bench/summary).
- 🔥2024.02.01: Support Agent training! Agent training algorithm is derived from this [paper](https://arxiv.org/pdf/2309.00986.pdf). We also added [ms-agent](https://www.modelscope.cn/datasets/iic/ms_agent/summary), a high-quality agent dataset. Use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen_7b_chat/lora/sft.sh) to start Agent training!
- 🔥2024.02.01: Support adding SFT loss in DPO training to reduce repetitive generation caused by KL divergence loss.
- 2024.02.01: Support using AdaLoRA and IA3 adapters in training.
- 2024.02.01: Support `--merge_lora` parameter in AnimateDiff training.
- 2024.01.30: Support [internlm-xcomposer2-7b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/internlm_xcomposer2_7b_chat).
- 🔥2024.01.30: Support [ZeRO-3](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_14b_chat/full_ddp_zero3/), simply specify `--deepspeed default-zero3`.
- 2024.01.29: Support internlm2-math series: internlm2-math-7b, internlm2-math-7b-chat, internlm2-math-20b, internlm2-math-20b-chat.
- 🔥2024.01.26: Support [yi-vl-6b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_vl_6b_chat), yi-vl-34b-chat.
- 2024.01.24: Support codefuse-codegeex2-6b-chat, codefuse-qwen-14b-chat.
- 2024.01.23: Support orion series: orion-14b, [orion-14b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/orion_14b_chat).
- 2024.01.20: Support [xverse-13b-256k](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/xverse_13b_256k), xverse-65b-v2, xverse-65b-chat.
- 🔥2024.01.17: Support internlm2 series: internlm2-7b-base, internlm2-7b, [internlm2-7b-sft-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/internlm2_7b_sft_chat), internlm2-7b-chat, internlm2-20b-base, internlm2-20b, internlm2-20b-sft-chat, internlm2-20b-chat.
- 2024.01.15: Support yuan series: yuan2-2b-instruct, [yuan2-2b-janus-instruct](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yuan2_2b_janus_instruct), yuan2-51b-instruct, yuan2-102b-instruct.
- 🔥2024.01.12: Support **deepseek-moe** series: deepseek-moe-16b, [deepseek-moe-16b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/deepseek_moe_16b_chat).
- 🔥2024.01.04: Support **VLLM deployment**, compatible with **OpenAI API** style, see [VLLM Inference Acceleration and Deployment](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/VLLM-inference-acceleration-and-deployment.md#Deployment) for details.
- 2024.01.04: Update [Benchmark](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Benchmark.md) for convenient viewing of training speed and memory usage of different models.
- 🔥2023.12.29: Support web-ui for sft training and inference, use `swift web-ui` after installing ms-swift to start.
- 🔥2023.12.29: Support DPO RLHF (Reinforcement Learning from Human Feedback) and three datasets for this task: AI-ModelScope/stack-exchange-paired, AI-ModelScope/hh-rlhf and AI-ModelScope/hh_rlhf_cn. See [documentation](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/DPO.md) to start training!
- 🔥2023.12.28: Support SCEdit! This tuner can significantly reduce memory usage in U-Net and support low-memory controllable image generation (replacing ControlNet), read the section below to learn more.
- 2023.12.23: Support [codegeex2-6b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/codegeex2_6b).
- 2023.12.19: Support [phi2-3b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/phi2_3b).
- 2023.12.18: Support VLLM for inference acceleration.
- 2023.12.15: Support deepseek, deepseek-coder series: deepseek-7b, deepseek-7b-chat, deepseek-67b, deepseek-67b-chat, openbuddy-deepseek-67b-chat, deepseek-coder-1_3b, deepseek-coder-1_3b-instruct, deepseek-coder-6_7b, deepseek-coder-6_7b-instruct, deepseek-coder-33b, deepseek-coder-33b-instruct.
- 2023.12.13: Support mistral-7b-instruct-v2, [mixtral-moe-7b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/mixtral_7b_moe), [mixtral-moe-7b-instruct](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/mixtral_7b_moe_instruct).
- 2023.12.09: Support `freeze_parameters` parameter as a compromise between lora and full-parameter training. Corresponding sh can be found in [full_freeze_ddp](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_7b_chat/full_freeze_ddp). Support `disable_tqdm`, `lazy_tokenize`, `preprocess_num_proc` parameters, see [command line arguments](https://github.com/modelscope/swift/blob/main/docs/source/LLM/%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%8F%82%E6%95%B0.md) for details.
- 2023.12.08: Support [sus-34b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/sus_34b_chat), support yi-6b-200k, yi-34b-200k.
- 2023.12.07: Support [Multi-Node DDP training](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E5%BE%AE%E8%B0%83%E6%96%87%E6%A1%A3.md#%E4%BD%BF%E7%94%A8cli).
- 2023.12.05: Support models: zephyr-7b-beta-chat, openbuddy-zephyr-7b-chat. Support datasets: hc3-zh, hc3-en.
- 🔥2023.12.02: [Self-cognition fine-tuning best practices](docs/source_en/LLM/Self-cognition-best-practice.md), **10 minutes to fine-tune a large model for self-cognition**, create your own unique large model.
- 🔥2023.11.30: Support training and inference of **qwen-1_8b**, **qwen-72b**, **qwen-audio** series models. Corresponding sh scripts can be found in [qwen_1_8b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_1_8b_chat), [qwen_72b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_72b_chat), [qwen_audio_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_audio_chat)
- 🔥2023.11.29: Support training and inference of **AnimateDiff**
- 🔥2023.11.24: Support **yi-34b-chat**, **codefuse-codellama-34b-chat** models. Corresponding sh scripts can be found in [yi_34b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_34b_chat), [codefuse_codellama_34b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/codefuse_codellama_34b_chat).
- 🔥2023.11.18: Support **tongyi-finance-14b** series models: tongyi-finance-14b, tongyi-finance-14b-chat, tongyi-finance-14b-chat-int4. Corresponding sh scripts can be found in [tongyi_finance_14b_chat_int4](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/tongyi_finance_14b_chat_int4).
- 2023.11.16: Support **flash attn** for more models: qwen series, qwen-vl series, llama series, openbuddy series, mistral series, yi series, ziya series. Please use `use_flash_attn` parameter.
- 🔥2023.11.11: Support **NEFTune**, simply use `Swift.prepare_model(model, NEFTuneConfig())` to enable.
- 🔥2023.11.11: Support training and inference by **command line** and inference by **Web-UI**, see `Usage with Swift CLI` section below for details.
- 🔥2023.11.10: Support **bluelm** series models: bluelm-7b, bluelm-7b-chat, bluelm-7b-32k, bluelm-7b-chat-32k. Corresponding sh scripts can be found in [bluelm_7b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/bluelm_7b_chat).
- 🔥2023.11.08: Support training and inference of **xverse-65b** model, script at [xverse_65b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/xverse_65b).
- 🔥2023.11.07: Support training and inference of **yi-6b**, **yi-34b** models, scripts at [yi_6b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_6b), [yi_34b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_34b).
- 🔥2023.10.30: Support two new tuners: **QA-LoRA** and **LongLoRA**.
- 🔥2023.10.30: Support editing models using **ROME** (Rank One Model Editing) to infuse new knowledge into models without training!
- 2023.10.30: Support **skywork-13b** series models: skywork-13b, skywork-13b-chat. Corresponding sh scripts can be found in [skywork_13b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/skywork_13b).
- 🔥2023.10.27: Support **chatglm3** series models: chatglm3-6b-base, chatglm3-6b, chatglm3-6b-32k. Corresponding sh scripts can be found in [chatglm3_6b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/chatglm3_6b).
- 🔥2023.10.17: Support SFT of **int4**, **int8** models: qwen-7b-chat-int4, qwen-14b-chat-int4, qwen-vl-chat-int4, baichuan2-7b-chat-int4, baichuan2-13b-chat-int4, qwen-7b-chat-int8, qwen-14b-chat-int8.
- 2023.10.15: Support **ziya2-13b** series models: ziya2-13b, ziya2-13b-chat.
- 2023.10.12: Support **mistral-7b** series models: openbuddy-mistral-7b-chat, mistral-7b, mistral-7b-instruct.
- 🔥2023.10.07: Support **DeepSpeed ZeRO-2**, enabling lora (not just qlora) to run DDP on dual A10 cards.
- 2023.10.04: Support more math, law, SQL, code domain datasets: blossom-math-zh, school-math-zh, text2sql-en, sql-create-context-en, lawyer-llama-zh, tigerbot-law-zh, leetcode-python-en.
- 🔥2023.09.25: Support **qwen-14b** series: qwen-14b, qwen-14b-chat.
- 2023.09.18: Support **internlm-20b** series: internlm-20b, internlm-20b-chat.
- 2023.09.12: Support **MP+DDP** to accelerate full-parameter training.
- 2023.09.05: Support **openbuddy-llama2-70b-chat**.
- 2023.09.03: Support **baichuan2** series: baichuan2-7b, baichuan2-7b-chat, baichuan2-13b, baichuan2-13b-chat.
</details>

## 🛠️ Installation

SWIFT runs in the Python environment. Please ensure your Python version is higher than 3.8.

- Method 1: Install SWIFT using pip command:

```shell
# Full capabilities
pip install 'ms-swift[all]' -U
# LLM only
pip install 'ms-swift[llm]' -U
# AIGC only
pip install 'ms-swift[aigc]' -U
# Adapters only
pip install ms-swift -U
```

- Method 2: Install SWIFT through source code (convenient for running training and inference scripts), please run the following commands:

```shell
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
```

SWIFT depends on torch>=1.13, recommend torch>=2.0.0.

- Method 3: Use SWIFT in our Docker image

```shell
# China-Hangzhou image
docker pull registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.1.2-tf2.14.0-1.13.1
# US-west image
docker pull registry.us-west-1.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.1.2-tf2.14.0-1.13.1
```

## 🚀 Getting Started

This section introduces basic usage, see the [Documentation](#-documentation) section for more ways to use.

### Web-UI

Web-UI is a gradio-based interface for **zero-threshold** training and deployment. It is easy to use and perfectly supports multi-GPU training and deployment:

```shell
SWIFT_UI_LANG=en swift web-ui
```

![image.png](./docs/resources/web-ui-en.jpg)

### Training

#### Training Scripts
You can refer to the following scripts to customize your own training script.

- full: [qwen1half-7b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen1half_7b_chat/full) (A100), [qwen-7b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_7b_chat/full_mp) (2\*A100)
- full+ddp+zero2: [qwen-7b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_7b_chat/full_ddp_zero2) (4\*A100)
- full+ddp+zero3: [qwen-14b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_14b_chat/full_ddp_zero3) (4\*A100)
- lora: [chatglm3-6b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/chatglm3_6b/lora) (3090), [baichuan2-13b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/baichuan2_13b_chat/lora_mp) (2\*3090), [yi-34b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_34b_chat/lora) (A100), [qwen-72b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_72b_chat/lora_mp) (2\*A100)
- lora+ddp: [chatglm3-6b](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/chatglm3_6b/lora_ddp) (2\*3090)
- lora+ddp+zero3: [qwen-14b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_14b_chat/lora_ddp_zero3) (4\*3090), [qwen-72b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_72b_chat/lora_ddp_zero3) (4\*A100)
- qlora(gptq-int4): [qwen-7b-chat-int4](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_7b_chat_int4/qlora) (3090)
- qlora(gptq-int8): [qwen1half-7b-chat-int8](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen1half_7b_chat_int8/qlora) (3090)
- qlora(bnb-int4): [qwen-7b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_7b_chat/qlora) (3090)


#### Supported Training Processes

| Training Process | Training Method                                                               |
|------------------|-------------------------------------------------------------------------------|
| Pretraining      | Text Generation                                                               |
| Fine-tuning      | Single-turn/Multi-turn<br>Agent Training/Self-cognition<br>Multi-modal Vision/Multi-modal Speech|
| Human Alignment  | DPO<br>ORPO<br>SimPO                                                          |
| Text-to-Image    | DreamBooth, etc.                                                              |
| Text-to-Video    | -                                                                             |

#### Single GPU Training

Start single GPU fine-tuning with the following command:

LoRA:
```shell
# Experimental Environment: A100
# GPU Memory Requirement: 20GB
# Runtime: 3.1 hours
CUDA_VISIBLE_DEVICES=0 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
    --eval_steps 200 \
```

Full-parameter:
```shell
# Experimental Environment: A100
# GPU Memory Requirement: 80GB
# Runtime: 2.5 hours
CUDA_VISIBLE_DEVICES=0 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type full \
    --output_dir output \
    --eval_steps 500 \
```


#### Model Parallel Training


```shell
# Experimental Environment: 2 * A100
# GPU Memory Requirement: 10GB + 13GB
# Runtime: 3.4 hours
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
```

#### Data Parallel Training

```shell
# Experimental Environment: 4 * A100
# GPU Memory Requirement: 4 * 30GB
# Runtime: 0.8 hours
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
```

Combining Model Parallelism and Data Parallelism:
```shell
# Experimental Environment: 4 * A100
# GPU Memory Requirement: 2*14GB + 2*18GB
# Runtime: 1.7 hours
NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
```

#### Deepspeed Training
Deepspeed supports training of quantized GPTQ and AWQ models.

ZeRO2:
```shell
# Experimental Environment: 4 * A100
# GPU Memory Requirement: 4 * 21GB
# Runtime: 0.9 hours
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
    --deepspeed default-zero2 \
```

ZeRO3:
```shell
# Experimental Environment: 4 * A100
# GPU Memory Requirement: 4 * 19GB
# Runtime: 3.2 hours
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
    --deepspeed default-zero3 \
```

ZeRO3-Offload:
```shell
# Experimental Environment: 4 * A100
# GPU Memory Requirement: 4 * 12GB
# Runtime: 60 hours
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_id_or_path AI-ModelScope/WizardLM-2-8x22B \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
    --deepspeed zero3-offload \
```


#### Multi-node Multi-GPU
```shell
# node0
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NNODES=2 \
NODE_RANK=0 \
MASTER_ADDR=127.0.0.1 \
NPROC_PER_NODE=8 \
swift sft \
    --model_id_or_path qwen1half-32b-chat \
    --sft_type full \
    --dataset blossom-math-zh \
    --output_dir output \
    --deepspeed default-zero3 \

# node1
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NNODES=2 \
NODE_RANK=1 \
MASTER_ADDR=xxx.xxx.xxx.xxx \
NPROC_PER_NODE=8 \
swift sft \
    --model_id_or_path qwen1half-32b-chat \
    --sft_type full \
    --dataset blossom-math-zh \
    --output_dir output \
    --deepspeed default-zero3 \
```

##### AliYun-DLC multi-node training
In DLC product, WORLD_SIZE is the node number, RANK is the node index, this is different from the definition of torchrun.

```shell
NNODES=$WORLD_SIZE \
NODE_RANK=$RANK \
swift sft \
    --model_id_or_path qwen1half-32b-chat \
    --sft_type full \
    --dataset blossom-math-zh \
    --output_dir output \
    --deepspeed default-zero3
```


### Inference
Original model:
```shell
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat
# use VLLM
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat \
    --infer_backend vllm --max_model_len 8192
```

LoRA fine-tuned:
```shell
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir xxx/checkpoint-xxx --load_dataset_config true
# use VLLM
CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir xxx/checkpoint-xxx --load_dataset_config true \
    --merge_lora true --infer_backend vllm --max_model_len 8192
```

### Evaluation

Original model:
```shell
# We recommend using vLLM for acceleration (arc evaluated in half a minute)
CUDA_VISIBLE_DEVICES=0 swift eval --model_type qwen1half-7b-chat \
    --eval_dataset ceval mmlu arc gsm8k --infer_backend vllm
```

LoRA fine-tuned:
```shell
CUDA_VISIBLE_DEVICES=0 swift eval --ckpt_dir xxx/checkpoint-xxx \
    --eval_dataset ceval mmlu arc gsm8k --infer_backend vllm \
    --merge_lora true \
```

### Quantization

Original model:
```shell
CUDA_VISIBLE_DEVICES=0 swift export --model_type qwen1half-7b-chat \
    --quant_bits 4 --quant_method awq
```

LoRA fine-tuned:
```shell
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir xxx/checkpoint-xxx --load_dataset_config true \
    --quant_method awq --quant_bits 4 \
    --merge_lora true \
```

### Deployment
The client uses the OpenAI API for invocation, for details refer to the [LLM deployment documentation](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/VLLM-inference-acceleration-and-deployment.md).

Original model:
```shell
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen1half-7b-chat
# 使用VLLM加速
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen1half-7b-chat \
    --infer_backend vllm --max_model_len 8192
```

LoRA fine-tuned:
```shell
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir xxx/checkpoint-xxx
# 使用VLLM加速
CUDA_VISIBLE_DEVICES=0 swift deploy \
    --ckpt_dir xxx/checkpoint-xxx --merge_lora true \
    --infer_backend vllm --max_model_len 8192
```

### Supported Models
The complete list of supported models and datasets can be found at [Supported Models and Datasets List](docs/source_en/LLM/Supported-models-datasets.md).

#### LLMs

| Model Type                                     | Model Introduction                                                     | Language           | Model Size                             | Model Type                                 |
|------------------------------------------------|------------------------------------------------------------------------|--------------------|----------------------------------------|------------------------------------------- |
| Qwen<br>Qwen1.5<br>Qwen2                            | [Tongyi Qwen 1.0 and 1.5 series models](https://github.com/QwenLM)  | Chinese<br>English    | 0.5B-110B<br>including quantized versions | base model<br>chat model<br>MoE model<br>code model                      |
| ChatGLM2<br>ChatGLM3<br>Codegeex2<br>GLM4           | [Zhipu ChatGLM series models](https://github.com/THUDM)               | Chinese<br>English    | 6B-9B                                     | base model<br>chat model<br>code model<br>long text model  |
| Baichuan/Baichuan2                             | [Baichuan 1 and Baichuan 2](https://github.com/baichuan-inc)           | Chinese<br>English    | 7B-13B<br>including quantized versions             | base model<br>chat model                       |
| Yuan2                                          | [Langchao Yuan series models](https://github.com/IEIT-Yuan)             | Chinese<br>English    | 2B-102B                                | instruct model                                 |
| XVerse                                         | [XVerse series models](https://github.com/xverse-ai)                    | Chinese<br>English    | 7B-65B                                 | base model<br>chat model<br>long text model<br>MoE model                |
| LLaMA2                                         | [LLaMA2 series models](https://github.com/facebookresearch/llama)       | English            | 7B-70B<br>including quantized versions   | base model<br>chat model                       |
| LLaMA3                   | [LLaMA3 series models](https://github.com/meta-llama/llama3)  | English       | 8B-70B<br>including quantized versions      | base model<br>chat model              |
| Mistral<br>Mixtral                            | [Mistral series models](https://github.com/mistralai/mistral-src)       | English            | 7B-22B     | base model<br>instruct model<br>MoE model                     |
| Yi<br>Yi1.5                                      | [01AI's YI series models](https://github.com/01-ai)                     | Chinese<br>English    | 6B-34B<br>including quantized             | base model<br>chat model<br>long text model            |
| InternLM<br>InternLM2<br>InternLM2-Math              | [Pujiang AI Lab InternLM series models](https://github.com/InternLM/InternLM) | Chinese<br>English | 1.8B-20B                            | base model<br>chat model<br>math model            |
| DeepSeek<br>DeepSeek-MoE<br>DeepSeek-Coder<br>DeepSeek-Math<br>DeepSeek-V2          | [DeepSeek series models](https://github.com/deepseek-ai)       | Chinese<br>English    | 1.3B-236B                               | base model<br>chat model<br>MoE model<br>code model<br>math model |
| MAMBA                                          | [MAMBA temporal convolution model](https://github.com/state-spaces/mamba) | English          | 130M-2.8B                              | base model                                 |
| Gemma                                          | [Google Gemma series models](https://github.com/google/gemma_pytorch)   | English            | 2B-7B                                  | base model<br>instruct model                       |
| MiniCPM                                        | [OpenBmB MiniCPM series models](https://github.com/OpenBMB/MiniCPM)     | Chinese<br>English    | 2B-3B                                  | chat model<br>MoE model                                 |
| OpenBuddy                                      | [OpenBuddy series models](https://github.com/OpenBuddy/OpenBuddy)       | Chinese<br>English    | 7B-67B                                 | base model<br>chat model                       |
| Orion                                          | [OrionStar AI series models](https://github.com/OrionStarAI)            | Chinese<br>English    | 14B                                    | base model<br>chat model                       |
| BlueLM                                         | [VIVO BlueLM large model](https://github.com/vivo-ai-lab/BlueLM)        | Chinese<br>English    | 7B                                     | base model<br>chat model                       |
| Ziya2                                          | [Fengshenbang series models](https://github.com/IDEA-CCNL/Fengshenbang-LM) | Chinese<br>English  | 13B                                    | base model<br>chat model                       |
| Skywork                                        | [Skywork series models](https://github.com/SkyworkAI/Skywork) | Chinese<br>English    | 13B                                    | base model<br>chat model                       |
| Zephyr                                         | Zephyr series models based on Mistral                                  | English            | 7B                                     | chat model                                 |
| PolyLM                                         | [Tongyi Lab self-developed PolyLM series models](https://github.com/DAMO-NLP-MT/PolyLM) | Multilingual | 13B                                 | base model                                 |
| SeqGPT                                         | [Tongyi Lab self-developed text understanding model for information extraction and text classification](https://github.com/Alibaba-NLP/SeqGPT) | Chinese | 560M                               | semantic understanding model                |
| SUS                                            | [Southern University of Science and Technology model fine-tuned on YI](https://github.com/SUSTech-IDEA/SUS-Chat) | Chinese<br>English | 34B                              | chat model                                 |
| Tongyi-Finance                                 | [Tongyi finance series models](https://github.com/QwenLM/Qwen)          | Chinese<br>English    | 14B                                    | base model<br>chat model<br>financial model        |
| CodeFuse-CodeLLaMA<br>CodeFuse-Codegeex2<br>CodeFuse-Qwen | [Ant CodeFuse series models](https://github.com/codefuse-ai)        | Chinese<br>English    | 6B-34B                                 | chat model<br>code model                      |
| phi2/phi3                                | Microsoft's PHI series models    | English            | 3B/4B                               | base model<br>instruct model<br>code model      |
| Grok | [X-ai](https://github.com/xai-org/grok-1) | English | 300B | base model |
| TeleChat | [Tele-AI](https://github.com/Tele-AI/Telechat) | Chinese<br>English | 7B-12B | chat model |
| dbrx | [databricks](https://github.com/databricks/dbrx) | English | 132B | base model<br>chat model  |
| mengzi3 | [Langboat](https://github.com/Langboat/Mengzi3) | Chinese<br>English | 13B | base model  |
| c4ai-command-r | [c4ai](https://cohere.com/command) | Multilingual | 35B-104B | chat model  |
| WizardLM2 | [WizardLM2 series models](https://github.com/nlpxucan/WizardLM) | English | 7B-8x22B<br>including quantized versions | chat model<br>MoE model |
| Atom | [Atom](https://github.com/LlamaFamily/Llama-Chinese) | Chinese | 7B| base model<br>chat model|
| Chinese-LLaMA-Alpaca-2 | [Chinese-LLaMA-Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | Chinese | 1.3B-13B| base model<br>chat model<br>long text model |
| Chinese-LLaMA-Alpaca-3 | [Chinese-LLaMA-Alpaca-3](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3) | Chinese | 8B| base model<br>chat model|
| ModelScope-Agent | [ModelScope Agent series models](https://github.com/modelscope/modelscope-agent) | Chinese | 7B-14B| agent model |

#### MLLMs

| Model Type         | Model Introduction                                                           | Language           | Model Size                         | Model Type         |
|------------------|------------------------------------------------------------------------|--------------------|-------------------|------------------- |
| Qwen-VL            | [Tongyi Qwen vision model](https://github.com/QwenLM)                        | Chinese<br>English | 7B<br>including quantized versions | base model<br>chat model |
| Qwen-Audio         | [Tongyi Qwen speech model](https://github.com/QwenLM)                        | Chinese<br>English | 7B                                 | base model<br>chat model |
| YI-VL              | [01AI's YI series vision models](https://github.com/01-ai)                   | Chinese<br>English | 6B-34B                             | chat model         |
| XComposer2         | [Pujiang AI Lab InternLM vision model](https://github.com/InternLM/InternLM) | Chinese<br>English | 7B                                 | chat model         |
| DeepSeek-VL        | [DeepSeek series vision models](https://github.com/deepseek-ai)              | Chinese<br>English | 1.3B-7B                            | chat model         |
| MiniCPM-V<br>MiniCPM-V-2<br>MiniCPM-V-2_5  | [OpenBmB MiniCPM vision model](https://github.com/OpenBMB/MiniCPM) | Chinese<br>English | 3B-9B            | chat model          |
| CogVLM<br>CogVLM2<br>CogAgent<br>GLM4V | [Zhipu ChatGLM visual QA and Agent model](https://github.com/THUDM/)         | Chinese<br>English | 9B-19B                            | chat model         |
| Llava              | [Llava series models](https://github.com/haotian-liu/LLaVA)                  | English            | 7B-34B                             | chat model |
| Llava-Next              | [Llava-Next series models](https://github.com/LLaVA-VL/LLaVA-NeXT)                  | Chinese<br>English | 8B-110B                             | chat model |
| mPLUG-Owl          | [mPLUG-Owl series models](https://github.com/X-PLUG/mPLUG-Owl)               | English            | 11B                                | chat model |
| InternVL           | [InternVL](https://github.com/OpenGVLab/InternVL)                            | Chinese<br>English | 2B-25.5B<br>including quantized version                              | chat model |
| Llava-llama3       | [xtuner](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers)   | English            | 8B                                 | chat model |
| Phi3-Vision                                      | Microsoft                        | English            | 4B              | chat model |
| PaliGemma                                  | Google              | English | 3B              | chat model |

#### Diffusion Models

| Model Type          | Model Introduction                                                    | Language | Model Type        |
|---------------------|----------------------------------------------------------------------|----------|------------------ |
| AnimateDiff         | [AnimateDiff animation model](https://github.com/guoyww/AnimateDiff) | English  | text-to-video     |
| SD1.5/SD2.0/SDXL    | [StabilityAI series diffusion models](https://github.com/Stability-AI) | English | text-to-image    |

### Supported Open Source Datasets

| Dataset Type | Training Task  | Documentation                                                                                                                                                                                                                                                                                                        |
|--------------|:---------------|--------------------------------------------------------------- |
| General      | Fine-tuning    | 🔥ruozhiba, 🔥ms-bench, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca, instinwild, cot-en, cot-zh, firefly-zh, instruct-en, gpt4all-en, sharegpt, tulu-v2-sft-mixture, wikipedia-zh, open-orca, sharegpt-gpt4, deepctrl-sft, coig-cqia. |
| Agent        | Fine-tuning    | 🔥ms-agent, 🔥ms-agent-for-agentfabric, ms-agent-multirole, 🔥toolbench-for-alpha-umi, damo-agent-zh, damo-agent-zh-mini, agent-instruct-all-en.                    |
| General      | Human Alignment | hh-rlhf, 🔥hh-rlhf-cn, stack-exchange-paired.                            |
| Code         | Fine-tuning    | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh.    |
| Medical      | Fine-tuning    | medical-en, medical-zh, 🔥disc-med-sft-zh.               |
| Legal        | Fine-tuning    | lawyer-llama-zh, tigerbot-law-zh, 🔥disc-law-sft-zh.               |
| Math         | Fine-tuning    | 🔥blossom-math-zh, school-math-zh, open-platypus-en.                      |
| SQL          | Fine-tuning    | text2sql-en, 🔥sql-create-context-en.                                    |
| Text Generation | Fine-tuning | 🔥advertise-gen-zh, 🔥dureader-robust-zh.                            |
| Classification | Fine-tuning  | cmnli-zh, 🔥jd-sentiment-zh, 🔥hc3-zh, 🔥hc3-en.           |
| Quantization Assist | Quantization | pileval.  |
| Other        | Fine-tuning    | finance-en, poetry-zh, webnovel-zh, generated-chat-zh, cls-fudan-news-zh, ner-jave-zh.   |
| Vision       | Fine-tuning    | coco-en, 🔥coco-en-mini, coco-en-2, coco-en-2-mini, capcha-images.         |
| Audio        | Fine-tuning    | aishell1-zh, 🔥aishell1-zh-mini.       |

### Supported Technologies

| Technology Name                                              |
| ------------------------------------------------------------ |
| 🔥LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/abs/2106.09685) |
| 🔥LoRA+: [LoRA+: Efficient Low Rank Adaptation of Large Models](https://arxiv.org/pdf/2402.12354.pdf) |
| 🔥GaLore:[GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection](https://arxiv.org/abs/2403.03507) |
| 🔥LISA: [LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning](https://arxiv.org/abs/2403.17919) |
| 🔥UnSloth: https://github.com/unslothai/unsloth               |
| 🔥LLaMA PRO: [LLAMA PRO: Progressive LLaMA with Block Expansion](https://arxiv.org/pdf/2401.02415.pdf) |
| 🔥SCEdit: [SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing](https://arxiv.org/abs/2312.11392)  < [arXiv](https://arxiv.org/abs/2312.11392)  \ |
| 🔥NEFTune: [Noisy Embeddings Improve Instruction Finetuning](https://arxiv.org/abs/2310.05914) |
| LongLoRA: [Efficient Fine-tuning of Long-Context Large Language Models](https://arxiv.org/abs/2309.12307) |
| Adapter: [Parameter-Efficient Transfer Learning for NLP](http://arxiv.org/abs/1902.00751) |
| Vision Prompt Tuning: [Visual Prompt Tuning](https://arxiv.org/abs/2203.12119) |
| Side: [Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks](https://arxiv.org/abs/1912.13503) |
| Res-Tuning: [Res-Tuning: A Flexible and Efficient Tuning Paradigm via Unbinding Tuner from Backbone](https://arxiv.org/abs/2310.19859)  < [arXiv](https://arxiv.org/abs/2310.19859)  \ |
| Tuners provided by [PEFT](https://github.com/huggingface/peft), such as IA3, AdaLoRA, etc. |

### Supported Hardware

| Hardware Environment           | Notes                                           |
|--------------------------------|-------------------------------------------------|
| CPU                            |                                                 |
| RTX 20/30/40 series, etc.      | After 30 series, BF16 and FlashAttn can be used |
| Computing cards T4/V100, etc.  | BF16 and FlashAttn not supported                |
| Computing cards A10/A100, etc. | Support BF16 and FlashAttn                      |
| Huawei Ascend NPU              |                                                 |

## 📃 Documentation

### Documentation Compiling

```shell
make docs
# Check docs/build/html/index.html in web-browser
```

### User Guide

| Document Name                                                |
| ------------------------------------------------------------ |
| [Using Web-UI](docs/source_en/GetStarted/Web-ui.md)          |
| [Using Tuners](docs/source_en/GetStarted/Tuners.md)          |
| [LLM Inference](docs/source_en/LLM/LLM-inference.md)         |
| [LLM Fine-tuning](docs/source_en/LLM/LLM-fine-tuning.md)     |
| [LLM Evaluation](docs/source_en/LLM/LLM-eval.md)     |
| [LLM Quantization](docs/source_en/LLM/LLM-quantization.md)   |
| [LLM Deployment](docs/source_en/LLM/VLLM-inference-acceleration-and-deployment.md) |
| [AnimateDiff Training](docs/source_en/AIGC/AnimateDiff-train-infer.md) |

### Reference Documentation
| Document Name                                                |
| ------------------------------------------------------------ |
| [Command Line Arguments](docs/source_en/LLM/Command-line-parameters.md) |
| [Supported Models and Datasets List](docs/source_en/LLM/Supported-models-datasets.md) |
| [Customizing New Models and Datasets](docs/source_en/LLM/Customization.md) |
| [Runtime Speed and Memory Benchmark](docs/source_en/LLM/Benchmark.md) |


### Best Practices

| Best Practices Name                                                |
| ------------------------------------------------------------ |
| [Agent Fine-Tuning Best Practice](docs/source_en/LLM/Agent-fine-tuning-best-practice.md) |
| [Agent Deployment Best Practice](docs/source_en/LLM/Agent-deployment-best-practice.md) |
| [Self-Cognition Fine-Tuning Best Practice](docs/source_en/LLM/Self-cognition-best-practice.md) |
|  [Qwen1.5 Best Practice](docs/source_en/LLM/Qwen1.5-best-practice.md) |
|  [Multi-Modal Model Training Best Practice](docs/source_en/Multi-Modal/index.md) |
|  [NPU Best Practice](docs/source_en/LLM/NPU-best-practice.md) |
| [DPO Human Alignment Training](docs/source_en/LLM/DPO.md)   |
| [ORPO Human Alignment Training](docs/source_en/LLM/ORPO.md)   |
| [SimPO Human Alignment Training](docs/source_en/LLM/SimPO.md)   |


### Deep Learning Tutorials

| Tutorial Name                                                |
|-------------------------------------------------------------- |
| [Introduction to Deep Learning](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/A.%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%85%A5%E9%97%A8%E4%BB%8B%E7%BB%8D.md) |
| [Large Model Basics](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/B.%E9%AD%94%E6%90%AD%E7%A4%BE%E5%8C%BA%E5%92%8CLLM%E5%A4%A7%E6%A8%A1%E5%9E%8B%E5%9F%BA%E7%A1%80%E7%9F%A5%E8%AF%86.md) |
| [Prompt Engineering](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/C.%E6%8F%90%E7%A4%BA%E8%AF%8D%E5%B7%A5%E7%A8%8B-prompt%20engineering.md) |
| [Transformer Architecture Introduction](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/D.Transformer%E7%BB%93%E6%9E%84.md) |
| [Training Technique Selection](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/E.%E6%8A%80%E6%9C%AF%E9%80%89%E5%9E%8B.md) |
| [Data Preprocessing](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/F.%E6%95%B0%E6%8D%AE%E9%A2%84%E5%A4%84%E7%90%86.md) |
| [Quantization](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/G.%E9%87%8F%E5%8C%96.md) |
| [Training](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/H.%E8%AE%AD%E7%BB%83.md) |
| [Inference](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/I.LLM%E5%92%8C%E5%A4%9A%E6%A8%A1%E6%80%81%E6%A8%A1%E5%9E%8B%E9%AB%98%E6%95%88%E6%8E%A8%E7%90%86%E5%AE%9E%E8%B7%B5.md) |
| [Deployment](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/J.%E9%83%A8%E7%BD%B2.md) |
| [Evaluation](https://github.com/modelscope/modelscope-classroom/blob/main/LLM-tutorial/K.%E5%A4%A7%E6%A8%A1%E5%9E%8B%E8%87%AA%E5%8A%A8%E8%AF%84%E4%BC%B0%E7%90%86%E8%AE%BA%E5%92%8C%E5%AE%9E%E6%88%98--LLM%20Automatic%20Evaluation.md) |

## 🏛 License

This framework is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE). For models and datasets, please refer to the original resource page and follow the corresponding License.

## 📎 Citation

```bibtex
@Misc{swift,
  title = {SWIFT:Scalable lightWeight Infrastructure for Fine-Tuning},
  author = {The ModelScope Team},
  howpublished = {\url{https://github.com/modelscope/swift}},
  year = {2024}
}
```

## ☎ Wechat Group

You can contact us and communicate with us by adding our WeChat group:

<p align="left">
<img src="asset/wechat.png" width="250" style="display: inline-block;">
</p>

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=modelscope/swift&type=Date)](https://star-history.com/#modelscope/swift&Date)