README_20240605.md 23.8 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# GLM-4

<p align="center">
 📄<a href="https://arxiv.org/pdf/2406.12793" target="_blank"> Report </a> • 🤗 <a href="https://huggingface.co/collections/THUDM/glm-4-665fcf188c414b03c2f7e3b7" target="_blank">HF Repo</a> • 🤖 <a href="https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat" target="_blank">ModelScope</a>  • 🟣 <a href="https://wisemodel.cn/models/ZhipuAI/glm-4-9b-chat" target="_blank">WiseModel</a>  • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 👋 Join <a href="https://discord.gg/8cnQKdAprg" target="_blank">Discord</a> and <a href="resources/WECHAT.md" target="_blank">WeChat</a>
</p>
<p align="center">
📍Experience and use a larger-scale GLM business model on the <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">Zhipu AI Open Platform</a>
</p>

## Update

- 🔥🔥 **News**: ```2024/11/01```: Dependencies have been updated in this repository. Please update the dependencies in
  `requirements.txt` to ensure the model runs correctly. The model weights
  for [glm-4-9b-chat-hf](https://huggingface.co/THUDM/glm-4-9b-chat-hf) are compatible with `transformers>=4.46.2` and can
  be implemented using the `GlmModel` class in the `transformers` library. Additionally, `tokenizer_chatglm.py`
  in [glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) and [glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b)
  has been updated for the latest version of `transformers`. Please update the files on HuggingFace.
- 🔥 **News**: ```2024/10/27```: We have open-sourced [LongReward](https://github.com/THUDM/LongReward), a model that
  uses AI feedback to enhance long-context large language models.
- 🔥 **News**: ```2024/10/25```: We have open-sourced the end-to-end Mandarin-English voice dialogue
  model [GLM-4-Voice](https://github.com/THUDM/GLM-4-Voice).
- 🔥 **News**: ```2024/09/05```: We have open-sourced [longcite-glm4-9b](https://huggingface.co/THUDM/LongCite-glm4-9b),
  a model enabling LLMs to produce fine-grained citations in long-context Q&A, along with the
  dataset [LongCite-45k](https://huggingface.co/datasets/THUDM/LongCite-45k). Try it out online
  at [Huggingface Space](https://huggingface.co/spaces/THUDM/LongCite).
- 🔥 **News**: ```2024/08/15```: We have
  open-sourced [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b), a model capable of generating over
  10,000 tokens in single-turn dialogue, along with the
  dataset [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k). Experience it online
  at [Huggingface Space](https://huggingface.co/spaces/THUDM/LongWriter) or
  the [ModelScope Community Space](https://modelscope.cn/studios/ZhipuAI/LongWriter-glm4-9b-demo).
- 🔥 **News**: ```2024/07/24```: We published the latest technical insights on long-text processing. Check out our
  technical report on training the open-source GLM-4-9B model for long
  texts [here](https://medium.com/@ChatGLM/glm-long-scaling-pre-trained-model-contexts-to-millions-caa3c48dea85).
- 🔥 **News**: ```2024/07/09```: The GLM-4-9B-Chat model is now compatible
  with [Ollama](https://github.com/ollama/ollama) and [Llama.cpp](https://github.com/ggerganov/llama.cpp). See detailed
  information in this [PR](https://github.com/ggerganov/llama.cpp/pull/8031).
- 🔥 **News**: ```2024/06/18```: We have released a [technical report](https://arxiv.org/pdf/2406.12793), available for
  viewing.
- 🔥 **News**: ```2024/06/05```: We released the GLM-4-9B series of open-source models.

## Model Introduction

GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
custom tool calls (Function Call), and long text reasoning (supporting up to 128K context).
This generation of models has added multi-language support, supporting 26 languages including Japanese, Korean,
and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
**GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.

## Model List

|        Model        | Type | Seq Length | Transformers Version |                                                                                                      Download                                                                                                       |                                                                                        Online Demo                                                                                         |
|:-------------------:|:----:|:----------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|      GLM-4-9B       | Base |     8K     |  `4.44.0 - 4.45.0`   |             [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b)<br> [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b)<br> [🟣 WiseModel](https://wisemodel.cn/models/ZhipuAI/glm-4-9b)             |                                                                                             /                                                                                              |
|    GLM-4-9B-Chat    | Chat |    128K    |     `>= 4.44.0`      |     [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat)<br> [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat)<br> [🟣 WiseModel](https://wisemodel.cn/models/ZhipuAI/GLM-4-9B-Chat)      | [🤖 ModelScope CPU](https://modelscope.cn/studios/dash-infer/GLM-4-Chat-DashInfer-Demo/summary)<br> [🤖 ModelScope vLLM](https://modelscope.cn/studios/ZhipuAI/glm-4-9b-chat-vllm/summary) |
|  GLM-4-9B-Chat-HF   | Chat |    128K    |     `>= 4.46.0`      |                                     [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat-hf)<br> [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat-hf)                                      | [🤖 ModelScope CPU](https://modelscope.cn/studios/dash-infer/GLM-4-Chat-DashInfer-Demo/summary)<br> [🤖 ModelScope vLLM](https://modelscope.cn/studios/ZhipuAI/glm-4-9b-chat-vllm/summary) |
|  GLM-4-9B-Chat-1M   | Chat |     1M     |     `>= 4.44.0`      | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat-1m)<br> [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat-1m)<br> [🟣 WiseModel](https://wisemodel.cn/models/ZhipuAI/GLM-4-9B-Chat-1M) |                                                                                             /                                                                                              |
| GLM-4-9B-Chat-1M-HF | Chat |     1M     |     `>= 4.46.0`      |                                  [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat-1m-hf)<br> [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat-1m-hf)                                   |                                                                                             /                                                                                              |
|      GLM-4V-9B      | Chat |     8K     |     `>= 4.46.0`      |           [🤗 Huggingface](https://huggingface.co/THUDM/glm-4v-9b)<br> [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4v-9b)<br> [🟣 WiseModel](https://wisemodel.cn/models/ZhipuAI/GLM-4V-9B)            |                                                       [🤖 ModelScope](https://modelscope.cn/studios/ZhipuAI/glm-4v-9b-Demo/summary)                                                        |

## BenchMarkß

### Typical Tasks

| Model               | AlignBench | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NaturalCodeBench |
|:--------------------|:----------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----------------:|
| Llama-3-8B-Instruct |    6.40    |   8.00   | 68.58  | 68.4 |  51.3  | 79.6  | 30.0 |   62.2    |       24.7       |
| ChatGLM3-6B         |    5.18    |   5.50   |  28.1  | 66.4 |  69.0  | 72.3  | 25.7 |   58.5    |       11.3       |
| GLM-4-9B-Chat       |    7.01    |   8.35   |  69.0  | 72.4 |  75.6  | 79.6  | 50.6 |   71.8    |       32.2       |

### Base Model

| Model               | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
|:--------------------|:----:|:------:|:----:|:-----:|:----:|:---------:|
| Llama-3-8B          | 66.6 |  51.2  |  -   | 45.8  |  -   |   33.5    |
| Llama-3-8B-Instruct | 68.4 |  51.3  | 34.2 | 79.6  | 30.0 |   62.2    |
| ChatGLM3-6B-Base    | 61.4 |  69.0  | 26.8 | 72.3  | 25.7 |   58.5    |
| GLM-4-9B            | 74.7 |  77.1  | 34.3 | 84.0  | 30.4 |   70.1    |

> Since `GLM-4-9B` adds some math, reasoning, and code-related instruction data during pre-training, Llama-3-8B-Instruct
> is also included in the comparison range.

### Long Context

The [needle-in-the-haystack experiment](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py) was
conducted with a context length of 1M, and the results are as follows:

![needle](resources/eval_needle.jpeg)

The long text capability was further evaluated on LongBench-Chat, and the results are as follows:

<p align="center">
<img src="resources/longbench.png" alt="Description text" style="display: block; margin: auto; width: 65%;">
</p>

### Multi Language

The tests for GLM-4-9B-Chat and Llama-3-8B-Instruct are conducted on six multilingual datasets. The test results and the
corresponding languages selected for each dataset are shown in the table below:

| Dataset     | Llama-3-8B-Instruct | GLM-4-9B-Chat |                                           Languages                                            |
|:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
| M-MMLU      |        49.6         |     56.6      |                                              all                                               |
| FLORES      |        25.0         |     28.8      | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
| MGSM        |        54.0         |     65.3      |                           zh, en, bn, de, es, fr, ja, ru, sw, te, th                           |
| XWinograd   |        61.7         |     73.1      |                                     zh, en, fr, jp, ru, pt                                     |
| XStoryCloze |        84.7         |     90.7      |                           zh, en, ar, es, eu, hi, id, my, ru, sw, te                           |
| XCOPA       |        73.3         |     80.1      |                           zh, et, ht, id, it, qu, sw, ta, th, tr, vi                           |

### Function Call

Tested
on [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard).

| Model                  | Overall Acc. | AST Summary | Exec Summary | Relevance |
|:-----------------------|:------------:|:-----------:|:------------:|:---------:|
| Llama-3-8B-Instruct    |    58.88     |    59.25    |    70.01     |   45.83   |
| gpt-4-turbo-2024-04-09 |    81.24     |    82.14    |    78.61     |   88.75   |
| ChatGLM3-6B            |    57.88     |    62.18    |    69.78     |   5.42    |
| GLM-4-9B-Chat          |    81.00     |    80.26    |    84.40     |   87.92   |

### Multi-Modal

GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related
classic tasks are as follows:

|                            | **MMBench-EN-Test** | **MMBench-CN-Test** | **SEEDBench_IMG** | **MMStar** | **MMMU** | **MME** | **HallusionBench** | **AI2D** | **OCRBench** |
|----------------------------|---------------------|---------------------|-------------------|------------|----------|---------|--------------------|----------|--------------|
| **gpt-4o-2024-05-13**      | 83.4                | 82.1                | 77.1              | 63.9       | 69.2     | 2310.3  | 55                 | 84.6     | 736          |
| **gpt-4-turbo-2024-04-09** | 81.0                | 80.2                | 73.0              | 56.0       | 61.7     | 2070.2  | 43.9               | 78.6     | 656          |
| **gpt-4-1106-preview**     | 77.0                | 74.4                | 72.3              | 49.7       | 53.8     | 1771.5  | 46.5               | 75.9     | 516          |
| **InternVL-Chat-V1.5**     | 82.3                | 80.7                | 75.2              | 57.1       | 46.8     | 2189.6  | 47.4               | 80.6     | 720          |
| **LLaVA-Next-Yi-34B**      | 81.1                | 79                  | 75.7              | 51.6       | 48.8     | 2050.2  | 34.8               | 78.9     | 574          |
| **Step-1V**                | 80.7                | 79.9                | 70.3              | 50.0       | 49.9     | 2206.4  | 48.4               | 79.2     | 625          |
| **MiniCPM-Llama3-V2.5**    | 77.6                | 73.8                | 72.3              | 51.8       | 45.8     | 2024.6  | 42.4               | 78.4     | 725          |
| **Qwen-VL-Max**            | 77.6                | 75.7                | 72.7              | 49.5       | 52       | 2281.7  | 41.2               | 75.7     | 684          |
| **Gemini 1.0 Pro**         | 73.6                | 74.3                | 70.7              | 38.6       | 49       | 2148.9  | 45.7               | 72.9     | 680          |
| **Claude 3 Opus**          | 63.3                | 59.2                | 64                | 45.7       | 54.9     | 1586.8  | 37.8               | 70.6     | 694          |
| **GLM-4V-9B**              | 81.1                | 79.4                | 76.8              | 58.7       | 47.2     | 2163.8  | 46.6               | 81.1     | 786          |

## Quick call

**For hardware configuration and system requirements, please check [here](basic_demo/README_en.md).**

### Use the following method to quickly call the GLM-4-9B-Chat language model

Use the transformers backend for inference:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

os.environ[
    'CUDA_VISIBLE_DEVICES'] = '0'  # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
MODEL_PATH = "THUDM/glm-4-9b-chat-hf"

device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)

query = "你好"

inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
                                       add_generation_prompt=True,
                                       tokenize=True,
                                       return_tensors="pt",
                                       return_dict=True
                                       )

inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_PATH,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map="auto"
).eval()

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Use the vLLM backend for inference:

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# GLM-4-9B-Chat
# If you encounter OOM, you can try to reduce max_model_len or increase tp_size
max_model_len, tp_size = 131072, 1
model_name = "THUDM/glm-4-9b-chat-hf"
prompt = [{"role": "user", "content": "你好"}]

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
    model=model_name,
    tensor_parallel_size=tp_size,
    max_model_len=max_model_len,
    trust_remote_code=True,
    enforce_eager=True,
    # if you encounter OOM in GLM-4-9B-Chat-1M, you can try to enable the following parameters
    # enable_chunked_prefill=True,
    # max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)

inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)

```

### Use the following method to quickly call the GLM-4V-9B multimodal model

Use the transformers backend for inference:

```python
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

os.environ[
    'CUDA_VISIBLE_DEVICES'] = '0'  # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
MODEL_PATH = "THUDM/glm-4v-9b"

device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)

query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
                                       add_generation_prompt=True, tokenize=True, return_tensors="pt",
                                       return_dict=True)  # chat mode

inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_PATH,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map="auto"
).eval()

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0]))
```

Use the vLLM backend for inference:

```python
from PIL import Image
from vllm import LLM, SamplingParams

model_name = "THUDM/glm-4v-9b"

llm = LLM(model=model_name,
          tensor_parallel_size=1,
          max_model_len=8192,
          trust_remote_code=True,
          enforce_eager=True)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.2,
                                 max_tokens=1024,
                                 stop_token_ids=stop_token_ids)

prompt = "What's the content of the image?"
image = Image.open("your image").convert('RGB')
inputs = {
    "prompt": prompt,
    "multi_modal_data": {
        "image": image
    },
}
outputs = llm.generate(inputs, sampling_params=sampling_params)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

```

## Complete project list

If you want to learn more about the GLM-4-9B series open source models, this open source repository provides developers
with basic GLM-4-9B usage and development code through the following content

+ [basic_demo](basic_demo/README.md): Contains
  + Interaction code using transformers and vLLM backend
  + OpenAI API backend interaction code
  + Batch reasoning code

+ [composite_demo](composite_demo/README.md): Contains
  + Fully functional demonstration code for GLM-4-9B and GLM-4V-9B open source models, including All Tools capabilities,
    long document interpretation, and multimodal capabilities.

+ [fintune_demo](finetune_demo/README.md): Contains
  + PEFT (LORA, P-Tuning) fine-tuning code
  + SFT fine-tuning code

+ [intel_device_demo](intel_device_demo/): Contains
  + OpenVINO deployment code
  + Intel® Extension for Transformers deployment code

## Friendly Links

+ [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory): Efficient open-source fine-tuning framework,
  already supports GLM-4-9B-Chat language model fine-tuning.
+ [SWIFT](https://github.com/modelscope/swift): LLM/VLM training framework from ModelScope, supports
  GLM-4-9B-Chat / GLM-4V-9b fine-tuning.
+ [Xorbits Inference](https://github.com/xorbitsai/inference): Performance-enhanced and comprehensive global inference
  framework, easily deploy your own models or import cutting-edge open source models with one click.
+ [LangChain-ChatChat](https://github.com/chatchat-space/Langchain-Chatchat): RAG and Agent applications based on
  language models such as Langchain and ChatGLM
+ [self-llm](https://github.com/datawhalechina/self-llm/tree/master/models/GLM-4): Datawhale's self-llm project, which
  includes
  the GLM-4-9B open source model cookbook.
+ [chatglm.cpp](https://github.com/li-plus/chatglm.cpp): Real-time inference on your laptop accelerated by quantization,
  similar to llama.cpp.
+ [OpenVINO](https://github.com/openvinotoolkit): glm-4-9b-chat already supports the use of OpenVINO. The toolkit accelerates inference and has a greater inference speed improvement on Intel's GPU, GPU and NPU devices. For
specific usage, please refer to  [OpenVINO notebooks](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-chatbot/llm-chatbot-generate-api.ipynb)


## License

+ The use of GLM-4 model weights must follow
  the [Model License](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE).

+ The code in this open source repository follows the [Apache 2.0](LICENSE) license.

Please strictly follow the open source license.

## Reference

If you find our work helpful, please consider citing the following paper.

```
@misc{glm2024chatglm,
      title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools},
      author={Team GLM  and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
      year={2024},
      eprint={2406.12793},
      archivePrefix={arXiv},
      primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}
```

```
@misc{wang2023cogvlm,
      title={CogVLM: Visual Expert for Pretrained Language Models},
      author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
      year={2023},
      eprint={2311.03079},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```