"convert/convert_gemma.go" did not exist on "b0135f4b9b176eab9155b660d04c9ca2a1ec2341"
gen_p2_images.py 5.91 KB
Newer Older
wangwf's avatar
wangwf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from collections import namedtuple
import csv
import json
import os
import os.path as osp

from diffusers import DiffusionPipeline
import migraphx_diffusers
from migraphx_diffusers import get_name_and_migraphx_config
import torch


def parse_args():
    from argparse import ArgumentParser
    parser = ArgumentParser(description="SDXL inference with migraphx backend")

    #=========================== mdoel load and compile ========================
    parser.add_argument(
        "-m", 
        "--model-dir",
        type=str,
        required=True,
        help="Path to local model directory.",
    )
    parser.add_argument(
        "--force-compile",
        action="store_true",
        default=False,
        help="Ignore existing .mxr files and override them",
    )
    parser.add_argument(
        "--img-size",
        type=int,
        default=None,
        help="output image size",
    )
    parser.add_argument(
        "--num-images-per-prompt",
        type=int,
        default=1,
        help="The number of images to generate per prompt."
    )
    # --------------------------------------------------------------------------

    # =============================== generation ===============================
    parser.add_argument(
        "-t",
        "--num-inference-steps",
        type=int,
        default=None,
        help="Number of iteration steps",
    )
    parser.add_argument(
        "--true-cfg-scale",
        default=None,
        type=float,
        help="Olny for flux pipeline. When > 1.0 and a provided `negative_prompt`, " \
             "enables true classifier-free guidance."
    )
    parser.add_argument(
        "--guidance-scale",
        default=None,
        type=float,
        help="Guidance scale is enabled by setting `guidance_scale > 1`. Higher " \
             "guidance scale encourages to generate images that are closely linked to " \
             "the text `prompt`, usually at the expense of lower image quality."
    )
    parser.add_argument(
        "-s",
        "--seed",
        type=int,
        default=42,
        help="Random seed",
    )
    # --------------------------------------------------------------------------

    # ================================ control =================================
    parser.add_argument(
        "-p",
        "--parti-prompts-file",
        type=str,
        required=True,
        help="Number of iteration steps",
    )
    parser.add_argument(
        "--count-submodels",
        action="store_true",
        help="count running time for each submodel",
    )
    parser.add_argument(
        "--save-dir",
        type=str,
        default=None,
        help="Path to save images",
    )
    parser.add_argument(
        "--resume",
        action="store_true",
        help="resume image generation",
    )
    # --------------------------------------------------------------------------

    args = parser.parse_args()
    return args


def parse_prompts(parti_prompts_file):
    Prompt = namedtuple("Prompt", 
                        ["prompt_text", "category", "challenge", "note"])
    prompt_list = []

    with open(parti_prompts_file, "r") as f:
        csv_reader = csv.reader(f, delimiter="\t")
        for i, row in enumerate(csv_reader):
            if i == 0:
                continue
            prompt_list.append(Prompt(*row))
    
    return prompt_list


def main():
    args = parse_args()
    pipe_name, migraphx_config = get_name_and_migraphx_config(args.model_dir)

    if args.img_size is not None:
        migraphx_config['common_args']['img_size'] = args.img_size
    migraphx_config['common_args'].update(dict(
        batch=args.num_images_per_prompt,
        force_compile=args.force_compile,
    ))

    pipe = DiffusionPipeline.from_pretrained(
        args.model_dir,
        torch_dtype=torch.float16,
        migraphx_config=migraphx_config
    )
    pipe.to("cuda")

    call_kwargs = {}
    if args.num_inference_steps is not None:
        call_kwargs['num_inference_steps'] = args.num_inference_steps
    if args.guidance_scale is not None:
        call_kwargs['guidance_scale'] = args.guidance_scale
    if args.true_cfg_scale is not None:
        assert pipe_name == 'flux.1-dev', \
            "`true_cfg_scale` is only valid for flux.1-dev pipeline!"
        call_kwargs['true_cfg_scale'] = args.true_cfg_scale
    if args.seed is not None:
        call_kwargs['generator'] = torch.Generator("cuda").manual_seed(args.seed)


    os.makedirs(args.save_dir, exist_ok=True)
    generator = torch.Generator("cuda").manual_seed(args.seed)

    print("Generating image...")
    for i, prompt in enumerate(parse_prompts(args.parti_prompts_file)):
        sub_dir = osp.join(args.save_dir, 
                           prompt.category.replace(" ", "").replace("&", "_"),
                           f"prompt_{i:0>4d}")
        prompt_json = osp.join(sub_dir, "prompt_info.json")

        # =========================== resume =========================
        if args.resume:
            check_file_list = [osp.join(sub_dir, f"image_{j:0>2d}.png") 
                               for j in range(args.num_images_per_prompt)]
            check_file_list.append(prompt_json)
            if all([osp.exists(f) for f in check_file_list]):
                print(f"Skipping prompt {i}: \"{prompt.prompt_text}\"")
                continue
        
        # =========================== generate image =========================
        print(f"Processing prompt {i}: \"{prompt.prompt_text}\"")
        if not osp.isdir(sub_dir):
            os.makedirs(sub_dir, exist_ok=True)
        
        with open(prompt_json, "w") as f:
            json.dump(prompt._asdict(), f)

        images = pipe(
            prompt=prompt.prompt_text, 
            **call_kwargs
        ).images

        for j, image in enumerate(images):
            save_path = osp.join(sub_dir, f"{j:0>2d}.png")
            image.save(save_path)
            print(f"Generated image: {save_path}")


if __name__ == "__main__":
    main()