Davis_test.py 1.68 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import random
import glob


class Davis(Dataset):
    def __init__(self, data_root , ext="png"):

        super().__init__()

        self.data_root = data_root
        self.images_sets = []

        for label_id in os.listdir(self.data_root):

            ctg_imgs_ = sorted(os.listdir(os.path.join(self.data_root , label_id)))
            ctg_imgs_ = [os.path.join(self.data_root , label_id , img_id) for img_id in ctg_imgs_]
            for start_idx in range(0,len(ctg_imgs_)-6,2):
                add_files = ctg_imgs_[start_idx : start_idx+7 : 2]
                add_files = add_files[:2] + [ctg_imgs_[start_idx+3]] + add_files[2:]
                self.images_sets.append(add_files)

        self.transforms = transforms.Compose([
                transforms.CenterCrop((480,840)),
                transforms.ToTensor()
            ])

        print(len(self.images_sets))

    def __getitem__(self, idx):

        imgpaths = self.images_sets[idx]
        images = [Image.open(img) for img in imgpaths]
        images = [self.transforms(img) for img in images]

        return images[:2] + images[3:] , [images[2]]

    def __len__(self):

        return len(self.images_sets)

def get_loader(data_root, batch_size, shuffle, num_workers, test_mode=True):

    dataset = Davis(data_root)
    return DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)

if __name__ == "__main__":

    dataset = Davis("./Davis_test/")

    print(len(dataset))

    dataloader = DataLoader(dataset , batch_size=1, shuffle=True, num_workers=0)