merge_lora.py 1.15 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import torch
"""
使用该脚本,将lora的权重合并大base model中
"""


def merge_lora_to_base_model():
    model_name_or_path = 'baichuan-inc/baichuan-7B'
    adapter_name_or_path = 'YeungNLP/firefly-baichuan-7b-qlora-sft'
    save_path = 'checkpoint/firefly-baichuan-7b-qlora-sft-merge'

    config = AutoConfig.from_pretrained(model_name_or_path)
    tokenizer = AutoTokenizer.from_pretrained(
        adapter_name_or_path,
        trust_remote_code=True,
        # llama不支持fast
        use_fast=False if config.model_type == 'llama' else True
    )
    model = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16,
        # device_map='auto',
        device_map={'': 'cpu'}
    )
    model = PeftModel.from_pretrained(model, adapter_name_or_path, device_map={'': 'cpu'})
    model = model.merge_and_unload()

    tokenizer.save_pretrained(save_path)
    model.save_pretrained(save_path)


if __name__ == '__main__':
    merge_lora_to_base_model()