tune_net.py 8.12 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python
# encoding: utf-8
"""
@author:  sherlock
@contact: sherlockliao01@gmail.com
"""

import logging
import os
import sys
from functools import partial

import ConfigSpace as CS
import ray
from hyperopt import hp
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler, PopulationBasedTraining
from ray.tune.schedulers.hb_bohb import HyperBandForBOHB
from ray.tune.suggest.bohb import TuneBOHB
from ray.tune.suggest.hyperopt import HyperOptSearch

sys.path.append('.')

from fastreid.config import get_cfg, CfgNode
from fastreid.engine import hooks
from fastreid.modeling import build_model
from fastreid.engine import DefaultTrainer, default_argument_parser, default_setup
from fastreid.utils.events import CommonMetricPrinter
from fastreid.utils import comm
from fastreid.utils.file_io import PathManager

from autotuner import *

logger = logging.getLogger("fastreid.auto_tuner")

ray.init(dashboard_host='127.0.0.1')


class AutoTuner(DefaultTrainer):
    def build_hooks(self):
        r"""
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.
        Returns:
            list[HookBase]:
        """
        cfg = self.cfg.clone()
        cfg.defrost()

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(self.optimizer, self.scheduler),
        ]

        ret.append(hooks.LayerFreeze(
            self.model,
            cfg.MODEL.FREEZE_LAYERS,
            cfg.SOLVER.FREEZE_ITERS,
            cfg.SOLVER.FREEZE_FC_ITERS,
        ))

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation after checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(TuneReportHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        if comm.is_main_process():
            # run writers in the end, so that evaluation metrics are written
            ret.append(hooks.PeriodicWriter([CommonMetricPrinter(self.max_iter)], 200))

        return ret

    @classmethod
    def build_model(cls, cfg):
        model = build_model(cfg)
        return model


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def update_config(cfg, config):
    frozen = cfg.is_frozen()
    cfg.defrost()

    # cfg.SOLVER.BASE_LR = config["lr"]
    # cfg.SOLVER.ETA_MIN_LR = config["lr"] * 0.0001
    # cfg.SOLVER.DELAY_EPOCHS = int(config["delay_epochs"])
    # cfg.MODEL.LOSSES.CE.SCALE = config["ce_scale"]
    # cfg.MODEL.HEADS.SCALE = config["circle_scale"]
    # cfg.MODEL.HEADS.MARGIN = config["circle_margin"]
    # cfg.SOLVER.WEIGHT_DECAY = config["wd"]
    # cfg.SOLVER.WEIGHT_DECAY_BIAS = config["wd_bias"]
    cfg.SOLVER.IMS_PER_BATCH = config["bsz"]
    cfg.DATALOADER.NUM_INSTANCE = config["num_inst"]

    if frozen: cfg.freeze()

    return cfg


def train_tuner(config, checkpoint_dir=None, cfg=None):
    update_config(cfg, config)

    tuner = AutoTuner(cfg)
    # Load checkpoint if specific
    if checkpoint_dir:
        path = os.path.join(checkpoint_dir, "checkpoint.pth")
        checkpoint = tuner.checkpointer.resume_or_load(path, resume=False)
        tuner.start_epoch = checkpoint.get("epoch", -1) + 1

    # Regular model training
    tuner.train()


def main(args):
    cfg = setup(args)

    exp_metrics = dict(metric="score", mode="max")

    if args.srch_algo == "hyperopt":
        # Create a HyperOpt search space
        search_space = {
            # "lr": hp.loguniform("lr", np.log(1e-6), np.log(1e-3)),
            # "delay_epochs": hp.randint("delay_epochs", 20, 60),
            # "wd": hp.uniform("wd", 0, 1e-3),
            # "wd_bias": hp.uniform("wd_bias", 0, 1e-3),
            "bsz": hp.choice("bsz", [64, 96, 128, 160, 224, 256]),
            "num_inst": hp.choice("num_inst", [2, 4, 8, 16, 32]),
            # "ce_scale": hp.uniform("ce_scale", 0.1, 1.0),
            # "circle_scale": hp.choice("circle_scale", [16, 32, 64, 128, 256]),
            # "circle_margin": hp.uniform("circle_margin", 0, 1) * 0.4 + 0.1,
        }

        current_best_params = [{
            "bsz": 0,  # index of hp.choice list
            "num_inst": 3,
        }]

        search_algo = HyperOptSearch(
            search_space,
            points_to_evaluate=current_best_params,
            **exp_metrics)

        if args.pbt:
            scheduler = PopulationBasedTraining(
                time_attr="training_iteration",
                **exp_metrics,
                perturbation_interval=2,
                hyperparam_mutations={
                    "bsz": [64, 96, 128, 160, 224, 256],
                    "num_inst": [2, 4, 8, 16, 32],
                }
            )
        else:
            scheduler = ASHAScheduler(
                grace_period=2,
                reduction_factor=3,
                max_t=7,
                **exp_metrics)

    elif args.srch_algo == "bohb":
        search_space = CS.ConfigurationSpace()
        search_space.add_hyperparameters([
            # CS.UniformFloatHyperparameter(name="lr", lower=1e-6, upper=1e-3, log=True),
            # CS.UniformIntegerHyperparameter(name="delay_epochs", lower=20, upper=60),
            # CS.UniformFloatHyperparameter(name="ce_scale", lower=0.1, upper=1.0),
            # CS.UniformIntegerHyperparameter(name="circle_scale", lower=8, upper=128),
            # CS.UniformFloatHyperparameter(name="circle_margin", lower=0.1, upper=0.5),
            # CS.UniformFloatHyperparameter(name="wd", lower=0, upper=1e-3),
            # CS.UniformFloatHyperparameter(name="wd_bias", lower=0, upper=1e-3),
            CS.CategoricalHyperparameter(name="bsz", choices=[64, 96, 128, 160, 224, 256]),
            CS.CategoricalHyperparameter(name="num_inst", choices=[2, 4, 8, 16, 32]),
            # CS.CategoricalHyperparameter(name="autoaug_enabled", choices=[True, False]),
            # CS.CategoricalHyperparameter(name="cj_enabled", choices=[True, False]),
        ])

        search_algo = TuneBOHB(
            search_space, max_concurrent=4, **exp_metrics)

        scheduler = HyperBandForBOHB(
            time_attr="training_iteration",
            reduction_factor=3,
            max_t=7,
            **exp_metrics,
        )

    else:
        raise ValueError("Search algorithm must be chosen from [hyperopt, bohb], but got {}".format(args.srch_algo))

    reporter = CLIReporter(
        parameter_columns=["bsz", "num_inst"],
        metric_columns=["r1", "map", "training_iteration"])

    analysis = tune.run(
        partial(
            train_tuner,
            cfg=cfg),
        resources_per_trial={"cpu": 4, "gpu": 1},
        search_alg=search_algo,
        num_samples=args.num_trials,
        scheduler=scheduler,
        progress_reporter=reporter,
        local_dir=cfg.OUTPUT_DIR,
        keep_checkpoints_num=10,
        name=args.srch_algo)

    best_trial = analysis.get_best_trial("score", "max", "last")
    logger.info("Best trial config: {}".format(best_trial.config))
    logger.info("Best trial final validation mAP: {}, Rank-1: {}".format(
        best_trial.last_result["map"], best_trial.last_result["r1"]))

    save_dict = dict(R1=best_trial.last_result["r1"].item(), mAP=best_trial.last_result["map"].item())
    save_dict.update(best_trial.config)
    path = os.path.join(cfg.OUTPUT_DIR, "best_config.yaml")
    with PathManager.open(path, "w") as f:
        f.write(CfgNode(save_dict).dump())
    logger.info("Best config saved to {}".format(os.path.abspath(path)))


if __name__ == "__main__":
    parser = default_argument_parser()
    parser.add_argument("--num-trials", type=int, default=8, help="number of tune trials")
    parser.add_argument("--srch-algo", type=str, default="hyperopt",
                        help="search algorithms for hyperparameters search space")
    parser.add_argument("--pbt", action="store_true", help="use population based training")
    args = parser.parse_args()
    print("Command Line Args:", args)
    main(args)