visualizer.py 11.6 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: sherlockliao01@gmail.com
"""

import os
import pickle
import random

import matplotlib.pyplot as plt
import numpy as np
import tqdm
from scipy.stats import norm
from sklearn import metrics

from .file_io import PathManager


class Visualizer:
    r"""Visualize images(activation map) ranking list of features generated by reid models."""

    def __init__(self, dataset):
        self.dataset = dataset

    def get_model_output(self, all_ap, dist, q_pids, g_pids, q_camids, g_camids):
        self.all_ap = all_ap
        self.dist = dist
        self.sim = 1 - dist
        self.q_pids = q_pids
        self.g_pids = g_pids
        self.q_camids = q_camids
        self.g_camids = g_camids

        self.indices = np.argsort(dist, axis=1)
        self.matches = (g_pids[self.indices] == q_pids[:, np.newaxis]).astype(np.int32)

        self.num_query = len(q_pids)

    def get_matched_result(self, q_index):
        q_pid = self.q_pids[q_index]
        q_camid = self.q_camids[q_index]

        order = self.indices[q_index]
        remove = (self.g_pids[order] == q_pid) & (self.g_camids[order] == q_camid)
        keep = np.invert(remove)
        cmc = self.matches[q_index][keep]
        sort_idx = order[keep]
        return cmc, sort_idx

    def save_rank_result(self, query_indices, output, max_rank=5, vis_label=False, label_sort='ascending',
                         actmap=False):
        if vis_label:
            fig, axes = plt.subplots(2, max_rank + 1, figsize=(3 * max_rank, 12))
        else:
            fig, axes = plt.subplots(1, max_rank + 1, figsize=(3 * max_rank, 6))
        for cnt, q_idx in enumerate(tqdm.tqdm(query_indices)):
            all_imgs = []
            cmc, sort_idx = self.get_matched_result(q_idx)
            query_info = self.dataset[q_idx]
            query_img = query_info['images']
            cam_id = query_info['camids']
            query_name = query_info['img_paths'].split('/')[-1]
            all_imgs.append(query_img)
            query_img = np.rollaxis(np.asarray(query_img.numpy(), dtype=np.uint8), 0, 3)
            plt.clf()
            ax = fig.add_subplot(1, max_rank + 1, 1)
            ax.imshow(query_img)
            ax.set_title('{:.4f}/cam{}'.format(self.all_ap[q_idx], cam_id))
            ax.axis("off")
            for i in range(max_rank):
                if vis_label:
                    ax = fig.add_subplot(2, max_rank + 1, i + 2)
                else:
                    ax = fig.add_subplot(1, max_rank + 1, i + 2)
                g_idx = self.num_query + sort_idx[i]
                gallery_info = self.dataset[g_idx]
                gallery_img = gallery_info['images']
                cam_id = gallery_info['camids']
                all_imgs.append(gallery_img)
                gallery_img = np.rollaxis(np.asarray(gallery_img, dtype=np.uint8), 0, 3)
                if cmc[i] == 1:
                    label = 'true'
                    ax.add_patch(plt.Rectangle(xy=(0, 0), width=gallery_img.shape[1] - 1,
                                               height=gallery_img.shape[0] - 1, edgecolor=(1, 0, 0),
                                               fill=False, linewidth=5))
                else:
                    label = 'false'
                    ax.add_patch(plt.Rectangle(xy=(0, 0), width=gallery_img.shape[1] - 1,
                                               height=gallery_img.shape[0] - 1,
                                               edgecolor=(0, 0, 1), fill=False, linewidth=5))
                ax.imshow(gallery_img)
                ax.set_title(f'{self.sim[q_idx, sort_idx[i]]:.3f}/{label}/cam{cam_id}')
                ax.axis("off")
            # if actmap:
            #     act_outputs = []
            #
            #     def hook_fns_forward(module, input, output):
            #         act_outputs.append(output.cpu())
            #
            #     all_imgs = np.stack(all_imgs, axis=0)  # (b, 3, h, w)
            #     all_imgs = torch.from_numpy(all_imgs).float()
            #     # normalize
            #     all_imgs = all_imgs.sub_(self.mean).div_(self.std)
            #     sz = list(all_imgs.shape[-2:])
            #     handle = m.base.register_forward_hook(hook_fns_forward)
            #     with torch.no_grad():
            #         _ = m(all_imgs.cuda())
            #     handle.remove()
            #     acts = self.get_actmap(act_outputs[0], sz)
            #     for i in range(top + 1):
            #         axes.flat[i].imshow(acts[i], alpha=0.3, cmap='jet')
            if vis_label:
                label_indice = np.where(cmc == 1)[0]
                if label_sort == "ascending": label_indice = label_indice[::-1]
                label_indice = label_indice[:max_rank]
                for i in range(max_rank):
                    if i >= len(label_indice): break
                    j = label_indice[i]
                    g_idx = self.num_query + sort_idx[j]
                    gallery_info = self.dataset[g_idx]
                    gallery_img = gallery_info['images']
                    cam_id = gallery_info['camids']
                    gallery_img = np.rollaxis(np.asarray(gallery_img, dtype=np.uint8), 0, 3)
                    ax = fig.add_subplot(2, max_rank + 1, max_rank + 3 + i)
                    ax.add_patch(plt.Rectangle(xy=(0, 0), width=gallery_img.shape[1] - 1,
                                               height=gallery_img.shape[0] - 1,
                                               edgecolor=(1, 0, 0),
                                               fill=False, linewidth=5))
                    ax.imshow(gallery_img)
                    ax.set_title(f'{self.sim[q_idx, sort_idx[j]]:.3f}/cam{cam_id}')
                    ax.axis("off")

            plt.tight_layout()
            filepath = os.path.join(output, "{}.jpg".format(cnt))
            fig.savefig(filepath)

    def vis_rank_list(self, output, vis_label, num_vis=100, rank_sort="ascending", label_sort="ascending", max_rank=5,
                      actmap=False):
        r"""Visualize rank list of query instance
        Args:
            output (str): a directory to save rank list result.
            vis_label (bool): if visualize label of query
            num_vis (int):
            rank_sort (str): save visualization results by which order,
                if rank_sort is ascending, AP from low to high, vice versa.
            label_sort (bool):
            max_rank (int): maximum number of rank result to visualize
            actmap (bool):
        """
        assert rank_sort in ['ascending', 'descending'], "{} not match [ascending, descending]".format(rank_sort)

        query_indices = np.argsort(self.all_ap)
        if rank_sort == 'descending': query_indices = query_indices[::-1]

        query_indices = query_indices[:int(num_vis)]
        self.save_rank_result(query_indices, output, max_rank, vis_label, label_sort, actmap)

    def vis_roc_curve(self, output):
        PathManager.mkdirs(output)
        pos, neg = [], []
        for i, q in enumerate(self.q_pids):
            cmc, sort_idx = self.get_matched_result(i)  # remove same id in same camera
            ind_pos = np.where(cmc == 1)[0]
            q_dist = self.dist[i]
            pos.extend(q_dist[sort_idx[ind_pos]])

            ind_neg = np.where(cmc == 0)[0]
            neg.extend(q_dist[sort_idx[ind_neg]])

        scores = np.hstack((pos, neg))
        labels = np.hstack((np.zeros(len(pos)), np.ones(len(neg))))

        fpr, tpr, thresholds = metrics.roc_curve(labels, scores)

        self.plot_roc_curve(fpr, tpr)
        filepath = os.path.join(output, "roc.jpg")
        plt.savefig(filepath)
        # self.plot_distribution(pos, neg)
        # filepath = os.path.join(output, "pos_neg_dist.jpg")
        # plt.savefig(filepath)
        return fpr, tpr, pos, neg

    @staticmethod
    def plot_roc_curve(fpr, tpr, name='model', fig=None):
        if fig is None:
            fig = plt.figure()
            plt.semilogx(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01), 'r', linestyle='--', label='Random guess')
        plt.semilogx(fpr, tpr, color=(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)),
                     label='ROC curve with {}'.format(name))
        plt.title('Receiver Operating Characteristic')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.legend(loc='best')
        return fig

    @staticmethod
    def plot_distribution(pos, neg, name='model', fig=None):
        if fig is None:
            fig = plt.figure()
        pos_color = (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))
        n, bins, _ = plt.hist(pos, bins=80, alpha=0.7, density=True,
                              color=pos_color,
                              label='positive with {}'.format(name))
        mu = np.mean(pos)
        sigma = np.std(pos)
        y = norm.pdf(bins, mu, sigma)  # fitting curve
        plt.plot(bins, y, color=pos_color)  # plot y curve

        neg_color = (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1))
        n, bins, _ = plt.hist(neg, bins=80, alpha=0.5, density=True,
                              color=neg_color,
                              label='negative with {}'.format(name))
        mu = np.mean(neg)
        sigma = np.std(neg)
        y = norm.pdf(bins, mu, sigma)  # fitting curve
        plt.plot(bins, y, color=neg_color)  # plot y curve

        plt.xticks(np.arange(0, 1.5, 0.1))
        plt.title('positive and negative pairs distribution')
        plt.legend(loc='best')
        return fig

    @staticmethod
    def save_roc_info(output, fpr, tpr, pos, neg):
        results = {
            "fpr": np.asarray(fpr),
            "tpr": np.asarray(tpr),
            "pos": np.asarray(pos),
            "neg": np.asarray(neg),
        }
        with open(os.path.join(output, "roc_info.pickle"), "wb") as handle:
            pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)

    @staticmethod
    def load_roc_info(path):
        with open(path, 'rb') as handle: res = pickle.load(handle)
        return res

    # def plot_camera_dist(self):
    #     same_cam, diff_cam = [], []
    #     for i, q in enumerate(self.q_pids):
    #         q_camid = self.q_camids[i]
    #
    #         order = self.indices[i]
    #         same = (self.g_pids[order] == q) & (self.g_camids[order] == q_camid)
    #         diff = (self.g_pids[order] == q) & (self.g_camids[order] != q_camid)
    #         sameCam_idx = order[same]
    #         diffCam_idx = order[diff]
    #
    #         same_cam.extend(self.sim[i, sameCam_idx])
    #         diff_cam.extend(self.sim[i, diffCam_idx])
    #
    #     fig = plt.figure(figsize=(10, 5))
    #     plt.hist(same_cam, bins=80, alpha=0.7, density=True, color='red', label='same camera')
    #     plt.hist(diff_cam, bins=80, alpha=0.5, density=True, color='blue', label='diff camera')
    #     plt.xticks(np.arange(0.1, 1.0, 0.1))
    #     plt.title('positive and negative pair distribution')
    #     return fig

    # def get_actmap(self, features, sz):
    #     """
    #     :param features: (1, 2048, 16, 8) activation map
    #     :return:
    #     """
    #     features = (features ** 2).sum(1)  # (1, 16, 8)
    #     b, h, w = features.size()
    #     features = features.view(b, h * w)
    #     features = nn.functional.normalize(features, p=2, dim=1)
    #     acts = features.view(b, h, w)
    #     all_acts = []
    #     for i in range(b):
    #         act = acts[i].numpy()
    #         act = cv2.resize(act, (sz[1], sz[0]))
    #         act = 255 * (act - act.max()) / (act.max() - act.min() + 1e-12)
    #         act = np.uint8(np.floor(act))
    #         all_acts.append(act)
    #     return all_acts