vision_transformer.py 16.2 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
The official jax code is released and available at https://github.com/google-research/vision_transformer
Status/TODO:
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2020 Ross Wightman
"""

import logging
import math
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from fastreid.layers import DropPath, trunc_normal_, to_2tuple
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY

logger = logging.getLogger(__name__)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """

    def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        self.img_size = img_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
                # map for all networks, the feature metadata has reliable channel and stride info, but using
                # stride to calc feature dim requires info about padding of each stage that isn't captured.
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
                if isinstance(o, (list, tuple)):
                    o = o[-1]  # last feature if backbone outputs list/tuple of features
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            if hasattr(self.backbone, 'feature_info'):
                feature_dim = self.backbone.feature_info.channels()[-1]
            else:
                feature_dim = self.backbone.num_features
        self.num_patches = feature_size[0] * feature_size[1]
        self.proj = nn.Conv2d(feature_dim, embed_dim, 1)

    def forward(self, x):
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class PatchEmbed_overlap(nn.Module):
    """ Image to Patch Embedding with overlapping patches
    """

    def __init__(self, img_size=224, patch_size=16, stride_size=20, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        stride_size_tuple = to_2tuple(stride_size)
        self.num_x = (img_size[1] - patch_size[1]) // stride_size_tuple[1] + 1
        self.num_y = (img_size[0] - patch_size[0]) // stride_size_tuple[0] + 1
        num_patches = self.num_x * self.num_y
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride_size)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.InstanceNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def forward(self, x):
        B, C, H, W = x.shape

        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)

        x = x.flatten(2).transpose(1, 2)  # [64, 8, 768]
        return x


class VisionTransformer(nn.Module):
    """ Vision Transformer
        A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
            - https://arxiv.org/abs/2010.11929
        Includes distillation token & head support for `DeiT: Data-efficient Image Transformers`
            - https://arxiv.org/abs/2012.12877
        """

    def __init__(self, img_size=224, patch_size=16, stride_size=16, in_chans=3, embed_dim=768,
                 depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., camera=0, drop_path_rate=0., hybrid_backbone=None,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6), sie_xishu=1.0):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        if hybrid_backbone is not None:
            self.patch_embed = HybridEmbed(
                hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
        else:
            self.patch_embed = PatchEmbed_overlap(
                img_size=img_size, patch_size=patch_size, stride_size=stride_size, in_chans=in_chans,
                embed_dim=embed_dim)

        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.cam_num = camera
        self.sie_xishu = sie_xishu
        # Initialize SIE Embedding
        if camera > 1:
            self.sie_embed = nn.Parameter(torch.zeros(camera, 1, embed_dim))
            trunc_normal_(self.sie_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
            for i in range(depth)])

        self.norm = norm_layer(embed_dim)

        trunc_normal_(self.cls_token, std=.02)
        trunc_normal_(self.pos_embed, std=.02)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward(self, x, camera_id=None):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)

        if self.cam_num > 0:
            x = x + self.pos_embed + self.sie_xishu * self.sie_embed[camera_id]
        else:
            x = x + self.pos_embed

        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)

        return x[:, 0].reshape(x.shape[0], -1, 1, 1)


def resize_pos_embed(posemb, posemb_new, hight, width):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    ntok_new = posemb_new.shape[1]

    posemb_token, posemb_grid = posemb[:, :1], posemb[0, 1:]
    ntok_new -= 1

    gs_old = int(math.sqrt(len(posemb_grid)))
    logger.info('Resized position embedding from size:{} to size: {} with height:{} width: {}'.format(posemb.shape,
                                                                                                      posemb_new.shape,
                                                                                                      hight,
                                                                                                      width))
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=(hight, width), mode='bilinear')
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, hight * width, -1)
    posemb = torch.cat([posemb_token, posemb_grid], dim=1)
    return posemb


@BACKBONE_REGISTRY.register()
def build_vit_backbone(cfg):
    """
    Create a Vision Transformer instance from config.
    Returns:
        SwinTransformer: a :class:`SwinTransformer` instance.
    """
    # fmt: off
    input_size      = cfg.INPUT.SIZE_TRAIN
    pretrain        = cfg.MODEL.BACKBONE.PRETRAIN
    pretrain_path   = cfg.MODEL.BACKBONE.PRETRAIN_PATH
    depth           = cfg.MODEL.BACKBONE.DEPTH
    sie_xishu       = cfg.MODEL.BACKBONE.SIE_COE
    stride_size     = cfg.MODEL.BACKBONE.STRIDE_SIZE
    drop_ratio      = cfg.MODEL.BACKBONE.DROP_RATIO
    drop_path_ratio = cfg.MODEL.BACKBONE.DROP_PATH_RATIO
    attn_drop_rate  = cfg.MODEL.BACKBONE.ATT_DROP_RATE
    # fmt: on

    num_depth = {
        'small': 8,
        'base': 12,
    }[depth]

    num_heads = {
        'small': 8,
        'base': 12,
    }[depth]

    mlp_ratio = {
        'small': 3.,
        'base': 4.
    }[depth]

    qkv_bias = {
        'small': False,
        'base': True
    }[depth]

    qk_scale = {
        'small': 768 ** -0.5,
        'base': None,
    }[depth]

    model = VisionTransformer(img_size=input_size, sie_xishu=sie_xishu, stride_size=stride_size, depth=num_depth,
                              num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              drop_path_rate=drop_path_ratio, drop_rate=drop_ratio, attn_drop_rate=attn_drop_rate)

    if pretrain:
        try:
            state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
            logger.info(f"Loading pretrained model from {pretrain_path}")

            if 'model' in state_dict:
                state_dict = state_dict.pop('model')
            if 'state_dict' in state_dict:
                state_dict = state_dict.pop('state_dict')
            for k, v in state_dict.items():
                if 'head' in k or 'dist' in k:
                    continue
                if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
                    # For old models that I trained prior to conv based patchification
                    O, I, H, W = model.patch_embed.proj.weight.shape
                    v = v.reshape(O, -1, H, W)
                elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
                    # To resize pos embedding when using model at different size from pretrained weights
                    if 'distilled' in pretrain_path:
                        logger.info("distill need to choose right cls token in the pth.")
                        v = torch.cat([v[:, 0:1], v[:, 2:]], dim=1)
                    v = resize_pos_embed(v, model.pos_embed.data, model.patch_embed.num_y, model.patch_embed.num_x)
                state_dict[k] = v
        except FileNotFoundError as e:
            logger.info(f'{pretrain_path} is not found! Please check this path.')
            raise e
        except KeyError as e:
            logger.info("State dict keys error! Please check the state dict.")
            raise e

        incompatible = model.load_state_dict(state_dict, strict=False)
        if incompatible.missing_keys:
            logger.info(
                get_missing_parameters_message(incompatible.missing_keys)
            )
        if incompatible.unexpected_keys:
            logger.info(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )

    return model