resnext.py 11.6 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# encoding: utf-8
"""
@author:  xingyu liao
@contact: sherlockliao01@gmail.com
"""

# based on:
# https://github.com/XingangPan/IBN-Net/blob/master/models/imagenet/resnext_ibn_a.py

import logging
import math

import torch
import torch.nn as nn

from fastreid.layers import *
from fastreid.utils import comm
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY

logger = logging.getLogger(__name__)
model_urls = {
    'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnext101_ibn_a-6ace051d.pth',
}


class Bottleneck(nn.Module):
    """
    RexNeXt bottleneck type C
    """
    expansion = 4

    def __init__(self, inplanes, planes, bn_norm, with_ibn, baseWidth, cardinality, stride=1,
                 downsample=None):
        """ Constructor
        Args:
            inplanes: input channel dimensionality
            planes: output channel dimensionality
            baseWidth: base width.
            cardinality: num of convolution groups.
            stride: conv stride. Replaces pooling layer.
        """
        super(Bottleneck, self).__init__()

        D = int(math.floor(planes * (baseWidth / 64)))
        C = cardinality
        self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False)
        if with_ibn:
            self.bn1 = IBN(D * C, bn_norm)
        else:
            self.bn1 = get_norm(bn_norm, D * C)
        self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
        self.bn2 = get_norm(bn_norm, D * C)
        self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = get_norm(bn_norm, planes * 4)
        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNeXt(nn.Module):
    """
    ResNext optimized for the ImageNet dataset, as specified in
    https://arxiv.org/pdf/1611.05431.pdf
    """

    def __init__(self, last_stride, bn_norm, with_ibn, with_nl, block, layers, non_layers,
                 baseWidth=4, cardinality=32):
        """ Constructor
        Args:
            baseWidth: baseWidth for ResNeXt.
            cardinality: number of convolution groups.
            layers: config of layers, e.g., [3, 4, 6, 3]
        """
        super(ResNeXt, self).__init__()

        self.cardinality = cardinality
        self.baseWidth = baseWidth
        self.inplanes = 64
        self.output_size = 64

        self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
        self.bn1 = get_norm(bn_norm, 64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, with_ibn=with_ibn)
        self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, with_ibn=with_ibn)
        self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, with_ibn=with_ibn)
        self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, with_ibn=with_ibn)

        self.random_init()

        # fmt: off
        if with_nl: self._build_nonlocal(layers, non_layers, bn_norm)
        else:       self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
        # fmt: on

    def _make_layer(self, block, planes, blocks, stride=1, bn_norm='BN', with_ibn=False):
        """ Stack n bottleneck modules where n is inferred from the depth of the network.
        Args:
            block: block type used to construct ResNext
            planes: number of output channels (need to multiply by block.expansion)
            blocks: number of blocks to be built
            stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
        Returns: a Module consisting of n sequential bottlenecks.
        """
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                get_norm(bn_norm, planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, bn_norm, with_ibn,
                            self.baseWidth, self.cardinality, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(self.inplanes, planes, bn_norm, with_ibn, self.baseWidth, self.cardinality, 1, None))

        return nn.Sequential(*layers)

    def _build_nonlocal(self, layers, non_layers, bn_norm):
        self.NL_1 = nn.ModuleList(
            [Non_local(256, bn_norm) for _ in range(non_layers[0])])
        self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
        self.NL_2 = nn.ModuleList(
            [Non_local(512, bn_norm) for _ in range(non_layers[1])])
        self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
        self.NL_3 = nn.ModuleList(
            [Non_local(1024, bn_norm) for _ in range(non_layers[2])])
        self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
        self.NL_4 = nn.ModuleList(
            [Non_local(2048, bn_norm) for _ in range(non_layers[3])])
        self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool1(x)

        NL1_counter = 0
        if len(self.NL_1_idx) == 0:
            self.NL_1_idx = [-1]
        for i in range(len(self.layer1)):
            x = self.layer1[i](x)
            if i == self.NL_1_idx[NL1_counter]:
                _, C, H, W = x.shape
                x = self.NL_1[NL1_counter](x)
                NL1_counter += 1
        # Layer 2
        NL2_counter = 0
        if len(self.NL_2_idx) == 0:
            self.NL_2_idx = [-1]
        for i in range(len(self.layer2)):
            x = self.layer2[i](x)
            if i == self.NL_2_idx[NL2_counter]:
                _, C, H, W = x.shape
                x = self.NL_2[NL2_counter](x)
                NL2_counter += 1
        # Layer 3
        NL3_counter = 0
        if len(self.NL_3_idx) == 0:
            self.NL_3_idx = [-1]
        for i in range(len(self.layer3)):
            x = self.layer3[i](x)
            if i == self.NL_3_idx[NL3_counter]:
                _, C, H, W = x.shape
                x = self.NL_3[NL3_counter](x)
                NL3_counter += 1
        # Layer 4
        NL4_counter = 0
        if len(self.NL_4_idx) == 0:
            self.NL_4_idx = [-1]
        for i in range(len(self.layer4)):
            x = self.layer4[i](x)
            if i == self.NL_4_idx[NL4_counter]:
                _, C, H, W = x.shape
                x = self.NL_4[NL4_counter](x)
                NL4_counter += 1
        return x

    def random_init(self):
        self.conv1.weight.data.normal_(0, math.sqrt(2. / (7 * 7 * 64)))
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.InstanceNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()


def init_pretrained_weights(key):
    """Initializes model with pretrained weights.

    Layers that don't match with pretrained layers in name or size are kept unchanged.
    """
    import os
    import errno
    import gdown

    def _get_torch_home():
        ENV_TORCH_HOME = 'TORCH_HOME'
        ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
        DEFAULT_CACHE_DIR = '~/.cache'
        torch_home = os.path.expanduser(
            os.getenv(
                ENV_TORCH_HOME,
                os.path.join(
                    os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
                )
            )
        )
        return torch_home

    torch_home = _get_torch_home()
    model_dir = os.path.join(torch_home, 'checkpoints')
    try:
        os.makedirs(model_dir)
    except OSError as e:
        if e.errno == errno.EEXIST:
            # Directory already exists, ignore.
            pass
        else:
            # Unexpected OSError, re-raise.
            raise

    filename = model_urls[key].split('/')[-1]

    cached_file = os.path.join(model_dir, filename)

    if not os.path.exists(cached_file):
        logger.info(f"Pretrain model don't exist, downloading from {model_urls[key]}")
        if comm.is_main_process():
            gdown.download(model_urls[key], cached_file, quiet=False)

    comm.synchronize()

    logger.info(f"Loading pretrained model from {cached_file}")
    state_dict = torch.load(cached_file, map_location=torch.device('cpu'))

    return state_dict


@BACKBONE_REGISTRY.register()
def build_resnext_backbone(cfg):
    """
    Create a ResNeXt instance from config.
    Returns:
        ResNeXt: a :class:`ResNeXt` instance.
    """

    # fmt: off
    pretrain      = cfg.MODEL.BACKBONE.PRETRAIN
    pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
    last_stride   = cfg.MODEL.BACKBONE.LAST_STRIDE
    bn_norm       = cfg.MODEL.BACKBONE.NORM
    with_ibn      = cfg.MODEL.BACKBONE.WITH_IBN
    with_nl       = cfg.MODEL.BACKBONE.WITH_NL
    depth         = cfg.MODEL.BACKBONE.DEPTH
    # fmt: on

    num_blocks_per_stage = {
        '50x': [3, 4, 6, 3],
        '101x': [3, 4, 23, 3],
        '152x': [3, 8, 36, 3], }[depth]
    nl_layers_per_stage = {
        '50x': [0, 2, 3, 0],
        '101x': [0, 2, 3, 0]}[depth]
    model = ResNeXt(last_stride, bn_norm, with_ibn, with_nl, Bottleneck,
                    num_blocks_per_stage, nl_layers_per_stage)
    if pretrain:
        if pretrain_path:
            try:
                state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))['model']
                # Remove module.encoder in name
                new_state_dict = {}
                for k in state_dict:
                    new_k = '.'.join(k.split('.')[2:])
                    if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
                        new_state_dict[new_k] = state_dict[k]
                state_dict = new_state_dict
                logger.info(f"Loading pretrained model from {pretrain_path}")
            except FileNotFoundError as e:
                logger.info(f'{pretrain_path} is not found! Please check this path.')
                raise e
            except KeyError as e:
                logger.info("State dict keys error! Please check the state dict.")
                raise e
        else:
            key = depth
            if with_ibn: key = 'ibn_' + key

            state_dict = init_pretrained_weights(key)

        incompatible = model.load_state_dict(state_dict, strict=False)
        if incompatible.missing_keys:
            logger.info(
                get_missing_parameters_message(incompatible.missing_keys)
            )
        if incompatible.unexpected_keys:
            logger.info(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )

    return model