repvgg.py 11.4 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# encoding: utf-8
# ref: https://github.com/CaoWGG/RepVGG/blob/develop/repvgg.py


import logging

import numpy as np
import torch
import torch.nn as nn

from fastreid.layers import *
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY

logger = logging.getLogger(__name__)


def deploy(self, mode=False):
    self.deploying = mode
    for module in self.children():
        if hasattr(module, 'deploying'):
            module.deploy(mode)


nn.Sequential.deploying = False
nn.Sequential.deploy = deploy


def conv_bn(norm_type, in_channels, out_channels, kernel_size, stride, padding, groups=1):
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=False))
    result.add_module('bn', get_norm(norm_type, out_channels))
    return result


class RepVGGBlock(nn.Module):

    def __init__(self, in_channels, out_channels, norm_type, kernel_size,
                 stride=1, padding=0, groups=1):
        super(RepVGGBlock, self).__init__()
        self.deploying = False

        self.groups = groups
        self.in_channels = in_channels

        assert kernel_size == 3
        assert padding == 1

        padding_11 = padding - kernel_size // 2

        self.nonlinearity = nn.ReLU()

        self.in_channels = in_channels
        self.in_channels = in_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.groups = groups

        self.register_parameter('fused_weight', None)
        self.register_parameter('fused_bias', None)

        self.rbr_identity = get_norm(norm_type, in_channels) if out_channels == in_channels and stride == 1 else None
        self.rbr_dense = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                 stride=stride, padding=padding, groups=groups)
        self.rbr_1x1 = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=1,
                               stride=stride, padding=padding_11, groups=groups)

    def forward(self, inputs):
        if self.deploying:
            assert self.fused_weight is not None and self.fused_bias is not None, \
                "Make deploy mode=True to generate fused weight and fused bias first"
            fused_out = self.nonlinearity(torch.nn.functional.conv2d(
                inputs, self.fused_weight, self.fused_bias, self.stride, self.padding, 1, self.groups))
            return fused_out

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)
        out = self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)

        return out

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert branch.__class__.__name__.find('BatchNorm') != -1
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def deploy(self, mode=False):
        self.deploying = mode
        if mode:
            fused_weight, fused_bias = self.get_equivalent_kernel_bias()
            self.register_parameter('fused_weight', nn.Parameter(fused_weight))
            self.register_parameter('fused_bias', nn.Parameter(fused_bias))
            del self.rbr_identity, self.rbr_1x1, self.rbr_dense


class RepVGG(nn.Module):

    def __init__(self, last_stride, norm_type, num_blocks, width_multiplier=None, override_groups_map=None):
        super(RepVGG, self).__init__()

        assert len(width_multiplier) == 4

        self.deploying = False
        self.override_groups_map = override_groups_map or dict()

        assert 0 not in self.override_groups_map

        self.in_planes = min(64, int(64 * width_multiplier[0]))

        self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, norm_type=norm_type,
                                  kernel_size=3, stride=2, padding=1)
        self.cur_layer_idx = 1
        self.stage1 = self._make_stage(int(64 * width_multiplier[0]), norm_type, num_blocks[0], stride=2)
        self.stage2 = self._make_stage(int(128 * width_multiplier[1]), norm_type, num_blocks[1], stride=2)
        self.stage3 = self._make_stage(int(256 * width_multiplier[2]), norm_type, num_blocks[2], stride=2)
        self.stage4 = self._make_stage(int(512 * width_multiplier[3]), norm_type, num_blocks[3], stride=last_stride)

    def _make_stage(self, planes, norm_type, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        blocks = []
        for stride in strides:
            cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
            blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, norm_type=norm_type,
                                      kernel_size=3, stride=stride, padding=1, groups=cur_groups))
            self.in_planes = planes
            self.cur_layer_idx += 1
        return nn.Sequential(*blocks)

    def deploy(self, mode=False):
        self.deploying = mode
        for module in self.children():
            if hasattr(module, 'deploying'):
                module.deploy(mode)

    def forward(self, x):
        out = self.stage0(x)
        out = self.stage1(out)
        out = self.stage2(out)
        out = self.stage3(out)
        out = self.stage4(out)
        return out


optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
g2_map = {l: 2 for l in optional_groupwise_layers}
g4_map = {l: 4 for l in optional_groupwise_layers}


def create_RepVGG_A0(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
                  width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None)


def create_RepVGG_A1(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
                  width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)


def create_RepVGG_A2(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
                  width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None)


def create_RepVGG_B0(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)


def create_RepVGG_B1(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[2, 2, 2, 4], override_groups_map=None)


def create_RepVGG_B1g2(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map)


def create_RepVGG_B1g4(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map)


def create_RepVGG_B2(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None)


def create_RepVGG_B2g2(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map)


def create_RepVGG_B2g4(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map)


def create_RepVGG_B3(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[3, 3, 3, 5], override_groups_map=None)


def create_RepVGG_B3g2(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map)


def create_RepVGG_B3g4(last_stride, norm_type):
    return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
                  width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map)


@BACKBONE_REGISTRY.register()
def build_repvgg_backbone(cfg):
    """
    Create a RepVGG instance from config.
    Returns:
        RepVGG: a :class: `RepVGG` instance.
    """

    # fmt: off
    pretrain      = cfg.MODEL.BACKBONE.PRETRAIN
    pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
    last_stride   = cfg.MODEL.BACKBONE.LAST_STRIDE
    bn_norm       = cfg.MODEL.BACKBONE.NORM
    depth         = cfg.MODEL.BACKBONE.DEPTH
    # fmt: on

    func_dict = {
        'A0': create_RepVGG_A0,
        'A1': create_RepVGG_A1,
        'A2': create_RepVGG_A2,
        'B0': create_RepVGG_B0,
        'B1': create_RepVGG_B1,
        'B1g2': create_RepVGG_B1g2,
        'B1g4': create_RepVGG_B1g4,
        'B2': create_RepVGG_B2,
        'B2g2': create_RepVGG_B2g2,
        'B2g4': create_RepVGG_B2g4,
        'B3': create_RepVGG_B3,
        'B3g2': create_RepVGG_B3g2,
        'B3g4': create_RepVGG_B3g4,
    }

    model = func_dict[depth](last_stride, bn_norm)

    if pretrain:
        try:
            state_dict = torch.load(pretrain_path, map_location=torch.device("cpu"))
            logger.info(f"Loading pretrained model from {pretrain_path}")
        except FileNotFoundError as e:
            logger.info(f'{pretrain_path} is not found! Please check this path.')
            raise e
        except KeyError as e:
            logger.info("State dict keys error! Please check the state dict.")
            raise e

        incompatible = model.load_state_dict(state_dict, strict=False)
        if incompatible.missing_keys:
            logger.info(
                get_missing_parameters_message(incompatible.missing_keys)
            )
        if incompatible.unexpected_keys:
            logger.info(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )

    return model