any_softmax.py 2.22 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: sherlockliao01@gmail.com
"""

import torch
import torch.nn as nn

__all__ = [
    "Linear",
    "ArcSoftmax",
    "CosSoftmax",
    "CircleSoftmax"
]


class Linear(nn.Module):
    def __init__(self, num_classes, scale, margin):
        super().__init__()
        self.num_classes = num_classes
        self.s = scale
        self.m = margin

    def forward(self, logits, targets):
        return logits.mul_(self.s)

    def extra_repr(self):
        return f"num_classes={self.num_classes}, scale={self.s}, margin={self.m}"


class CosSoftmax(Linear):
    r"""Implement of large margin cosine distance:
    """

    def forward(self, logits, targets):
        index = torch.where(targets != -1)[0]
        m_hot = torch.zeros(index.size()[0], logits.size()[1], device=logits.device, dtype=logits.dtype)
        m_hot.scatter_(1, targets[index, None], self.m)
        logits[index] -= m_hot
        logits.mul_(self.s)
        return logits


class ArcSoftmax(Linear):

    def forward(self, logits, targets):
        index = torch.where(targets != -1)[0]
        m_hot = torch.zeros(index.size()[0], logits.size()[1], device=logits.device, dtype=logits.dtype)
        m_hot.scatter_(1, targets[index, None], self.m)
        logits.acos_()
        logits[index] += m_hot
        logits.cos_().mul_(self.s)
        return logits


class CircleSoftmax(Linear):

    def forward(self, logits, targets):
        alpha_p = torch.clamp_min(-logits.detach() + 1 + self.m, min=0.)
        alpha_n = torch.clamp_min(logits.detach() + self.m, min=0.)
        delta_p = 1 - self.m
        delta_n = self.m

        # When use model parallel, there are some targets not in class centers of local rank
        index = torch.where(targets != -1)[0]
        m_hot = torch.zeros(index.size()[0], logits.size()[1], device=logits.device, dtype=logits.dtype)
        m_hot.scatter_(1, targets[index, None], 1)

        logits_p = alpha_p * (logits - delta_p)
        logits_n = alpha_n * (logits - delta_n)

        logits[index] = logits_p[index] * m_hot + logits_n[index] * (1 - m_hot)

        neg_index = torch.where(targets == -1)[0]
        logits[neg_index] = logits_n[neg_index]

        logits.mul_(self.s)

        return logits