transforms.py 5.58 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: sherlockliao01@gmail.com
"""

__all__ = ['ToTensor', 'RandomPatch', 'AugMix', ]

import math
import random
from collections import deque

import numpy as np
import torch

from .functional import to_tensor, augmentations


class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 255.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


class RandomPatch(object):
    """Random patch data augmentation.
    There is a patch pool that stores randomly extracted pathces from person images.
    For each input image, RandomPatch
        1) extracts a random patch and stores the patch in the patch pool;
        2) randomly selects a patch from the patch pool and pastes it on the
           input (at random position) to simulate occlusion.
    Reference:
        - Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019.
        - Zhou et al. Learning Generalisable Omni-Scale Representations
          for Person Re-Identification. arXiv preprint, 2019.
    """

    def __init__(self, prob_happen=0.5, pool_capacity=50000, min_sample_size=100,
                 patch_min_area=0.01, patch_max_area=0.5, patch_min_ratio=0.1, prob_flip_leftright=0.5,
                 ):
        self.prob_happen = prob_happen

        self.patch_min_area = patch_min_area
        self.patch_max_area = patch_max_area
        self.patch_min_ratio = patch_min_ratio

        self.prob_flip_leftright = prob_flip_leftright

        self.patchpool = deque(maxlen=pool_capacity)
        self.min_sample_size = min_sample_size

    def generate_wh(self, W, H):
        area = W * H
        for attempt in range(100):
            target_area = random.uniform(self.patch_min_area, self.patch_max_area) * area
            aspect_ratio = random.uniform(self.patch_min_ratio, 1. / self.patch_min_ratio)
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
            if w < W and h < H:
                return w, h
        return None, None

    def transform_patch(self, patch):
        if random.uniform(0, 1) > self.prob_flip_leftright:
            patch = torch.flip(patch, dims=[2])
        return patch

    def __call__(self, img):
        _, H, W = img.size()  # original image size

        # collect new patch
        w, h = self.generate_wh(W, H)
        if w is not None and h is not None:
            x1 = random.randint(0, W - w)
            y1 = random.randint(0, H - h)
            new_patch = img[..., y1:y1 + h, x1:x1 + w]
            self.patchpool.append(new_patch)

        if len(self.patchpool) < self.min_sample_size:
            return img

        if random.uniform(0, 1) > self.prob_happen:
            return img

        # paste a randomly selected patch on a random position
        patch = random.sample(self.patchpool, 1)[0]
        _, patchH, patchW = patch.size()
        x1 = random.randint(0, W - patchW)
        y1 = random.randint(0, H - patchH)
        patch = self.transform_patch(patch)
        img[..., y1:y1 + patchH, x1:x1 + patchW] = patch

        return img


class AugMix(object):
    """ Perform AugMix augmentation and compute mixture.
    """

    def __init__(self, prob=0.5, aug_prob_coeff=0.1, mixture_width=3, mixture_depth=1, aug_severity=1):
        """
        Args:
            prob: Probability of taking augmix
            aug_prob_coeff: Probability distribution coefficients.
            mixture_width: Number of augmentation chains to mix per augmented example.
            mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
            aug_severity: Severity of underlying augmentation operators (between 1 to 10).
        """
        # fmt: off
        self.prob           = prob
        self.aug_prob_coeff = aug_prob_coeff
        self.mixture_width  = mixture_width
        self.mixture_depth  = mixture_depth
        self.aug_severity   = aug_severity
        self.augmentations  = augmentations
        # fmt: on

    def __call__(self, image):
        """Perform AugMix augmentations and compute mixture.

        Returns:
          mixed: Augmented and mixed image.
        """
        if random.random() > self.prob:
            # Avoid the warning: the given NumPy array is not writeable
            return np.asarray(image).copy()

        ws = np.float32(
            np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
        m = np.float32(np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))

        mix = np.zeros([image.size[1], image.size[0], 3])
        for i in range(self.mixture_width):
            image_aug = image.copy()
            depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(1, 4)
            for _ in range(depth):
                op = np.random.choice(self.augmentations)
                image_aug = op(image_aug, self.aug_severity)
            mix += ws[i] * np.asarray(image_aug)

        mixed = (1 - m) * image + m * mix
        return mixed.astype(np.uint8)