cuhk03.py 11.8 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: liaoxingyu2@jd.com
"""

import json
import os.path as osp

from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.utils.file_io import PathManager
from .bases import ImageDataset


@DATASET_REGISTRY.register()
class CUHK03(ImageDataset):
    """CUHK03.

    Reference:
        Li et al. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification. CVPR 2014.

    URL: `<http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html#!>`_

    Dataset statistics:
        - identities: 1360.
        - images: 13164.
        - cameras: 6.
        - splits: 20 (classic).
    """
    dataset_dir = 'cuhk03'
    dataset_url = None
    dataset_name = "cuhk03"

    def __init__(self, root='datasets', split_id=0, cuhk03_labeled=True, cuhk03_classic_split=False, **kwargs):
        self.root = root
        self.dataset_dir = osp.join(self.root, self.dataset_dir)

        self.data_dir = osp.join(self.dataset_dir, 'cuhk03_release')
        self.raw_mat_path = osp.join(self.data_dir, 'cuhk-03.mat')

        self.imgs_detected_dir = osp.join(self.dataset_dir, 'images_detected')
        self.imgs_labeled_dir = osp.join(self.dataset_dir, 'images_labeled')

        self.split_classic_det_json_path = osp.join(self.dataset_dir, 'splits_classic_detected.json')
        self.split_classic_lab_json_path = osp.join(self.dataset_dir, 'splits_classic_labeled.json')

        self.split_new_det_json_path = osp.join(self.dataset_dir, 'splits_new_detected.json')
        self.split_new_lab_json_path = osp.join(self.dataset_dir, 'splits_new_labeled.json')

        self.split_new_det_mat_path = osp.join(self.dataset_dir, 'cuhk03_new_protocol_config_detected.mat')
        self.split_new_lab_mat_path = osp.join(self.dataset_dir, 'cuhk03_new_protocol_config_labeled.mat')

        required_files = [
            self.dataset_dir,
            self.data_dir,
            self.raw_mat_path,
            self.split_new_det_mat_path,
            self.split_new_lab_mat_path
        ]
        self.check_before_run(required_files)

        self.preprocess_split()

        if cuhk03_labeled:
            split_path = self.split_classic_lab_json_path if cuhk03_classic_split else self.split_new_lab_json_path
        else:
            split_path = self.split_classic_det_json_path if cuhk03_classic_split else self.split_new_det_json_path

        with PathManager.open(split_path) as f:
            splits = json.load(f)
        assert split_id < len(splits), 'Condition split_id ({}) < len(splits) ({}) is false'.format(split_id,
                                                                                                    len(splits))
        split = splits[split_id]

        train = split['train']
        tmp_train = []
        for img_path, pid, camid in train:
            new_pid = self.dataset_name + "_" + str(pid)
            new_camid = self.dataset_name + "_" + str(camid)
            tmp_train.append((img_path, new_pid, new_camid))
        train = tmp_train
        del tmp_train
        query = split['query']
        gallery = split['gallery']

        super(CUHK03, self).__init__(train, query, gallery, **kwargs)

    def preprocess_split(self):
        # This function is a bit complex and ugly, what it does is
        # 1. extract data from cuhk-03.mat and save as png images
        # 2. create 20 classic splits (Li et al. CVPR'14)
        # 3. create new split (Zhong et al. CVPR'17)
        if osp.exists(self.imgs_labeled_dir) \
                and osp.exists(self.imgs_detected_dir) \
                and osp.exists(self.split_classic_det_json_path) \
                and osp.exists(self.split_classic_lab_json_path) \
                and osp.exists(self.split_new_det_json_path) \
                and osp.exists(self.split_new_lab_json_path):
            return

        import h5py
        from imageio import imwrite
        from scipy import io

        PathManager.mkdirs(self.imgs_detected_dir)
        PathManager.mkdirs(self.imgs_labeled_dir)

        print('Extract image data from "{}" and save as png'.format(self.raw_mat_path))
        mat = h5py.File(self.raw_mat_path, 'r')

        def _deref(ref):
            return mat[ref][:].T

        def _process_images(img_refs, campid, pid, save_dir):
            img_paths = []  # Note: some persons only have images for one view
            for imgid, img_ref in enumerate(img_refs):
                img = _deref(img_ref)
                if img.size == 0 or img.ndim < 3:
                    continue  # skip empty cell
                # images are saved with the following format, index-1 (ensure uniqueness)
                # campid: index of camera pair (1-5)
                # pid: index of person in 'campid'-th camera pair
                # viewid: index of view, {1, 2}
                # imgid: index of image, (1-10)
                viewid = 1 if imgid < 5 else 2
                img_name = '{:01d}_{:03d}_{:01d}_{:02d}.png'.format(campid + 1, pid + 1, viewid, imgid + 1)
                img_path = osp.join(save_dir, img_name)
                if not osp.isfile(img_path):
                    imwrite(img_path, img)
                img_paths.append(img_path)
            return img_paths

        def _extract_img(image_type):
            print('Processing {} images ...'.format(image_type))
            meta_data = []
            imgs_dir = self.imgs_detected_dir if image_type == 'detected' else self.imgs_labeled_dir
            for campid, camp_ref in enumerate(mat[image_type][0]):
                camp = _deref(camp_ref)
                num_pids = camp.shape[0]
                for pid in range(num_pids):
                    img_paths = _process_images(camp[pid, :], campid, pid, imgs_dir)
                    assert len(img_paths) > 0, 'campid{}-pid{} has no images'.format(campid, pid)
                    meta_data.append((campid + 1, pid + 1, img_paths))
                print('- done camera pair {} with {} identities'.format(campid + 1, num_pids))
            return meta_data

        meta_detected = _extract_img('detected')
        meta_labeled = _extract_img('labeled')

        def _extract_classic_split(meta_data, test_split):
            train, test = [], []
            num_train_pids, num_test_pids = 0, 0
            num_train_imgs, num_test_imgs = 0, 0
            for i, (campid, pid, img_paths) in enumerate(meta_data):

                if [campid, pid] in test_split:
                    for img_path in img_paths:
                        camid = int(osp.basename(img_path).split('_')[2]) - 1  # make it 0-based
                        test.append((img_path, num_test_pids, camid))
                    num_test_pids += 1
                    num_test_imgs += len(img_paths)
                else:
                    for img_path in img_paths:
                        camid = int(osp.basename(img_path).split('_')[2]) - 1  # make it 0-based
                        train.append((img_path, num_train_pids, camid))
                    num_train_pids += 1
                    num_train_imgs += len(img_paths)
            return train, num_train_pids, num_train_imgs, test, num_test_pids, num_test_imgs

        print('Creating classic splits (# = 20) ...')
        splits_classic_det, splits_classic_lab = [], []
        for split_ref in mat['testsets'][0]:
            test_split = _deref(split_ref).tolist()

            # create split for detected images
            train, num_train_pids, num_train_imgs, test, num_test_pids, num_test_imgs = \
                _extract_classic_split(meta_detected, test_split)
            splits_classic_det.append({
                'train': train,
                'query': test,
                'gallery': test,
                'num_train_pids': num_train_pids,
                'num_train_imgs': num_train_imgs,
                'num_query_pids': num_test_pids,
                'num_query_imgs': num_test_imgs,
                'num_gallery_pids': num_test_pids,
                'num_gallery_imgs': num_test_imgs
            })

            # create split for labeled images
            train, num_train_pids, num_train_imgs, test, num_test_pids, num_test_imgs = \
                _extract_classic_split(meta_labeled, test_split)
            splits_classic_lab.append({
                'train': train,
                'query': test,
                'gallery': test,
                'num_train_pids': num_train_pids,
                'num_train_imgs': num_train_imgs,
                'num_query_pids': num_test_pids,
                'num_query_imgs': num_test_imgs,
                'num_gallery_pids': num_test_pids,
                'num_gallery_imgs': num_test_imgs
            })

        with PathManager.open(self.split_classic_det_json_path, 'w') as f:
            json.dump(splits_classic_det, f, indent=4, separators=(',', ': '))
        with PathManager.open(self.split_classic_lab_json_path, 'w') as f:
            json.dump(splits_classic_lab, f, indent=4, separators=(',', ': '))

        def _extract_set(filelist, pids, pid2label, idxs, img_dir, relabel):
            tmp_set = []
            unique_pids = set()
            for idx in idxs:
                img_name = filelist[idx][0]
                camid = int(img_name.split('_')[2]) - 1  # make it 0-based
                pid = pids[idx]
                if relabel:
                    pid = pid2label[pid]
                img_path = osp.join(img_dir, img_name)
                tmp_set.append((img_path, int(pid), camid))
                unique_pids.add(pid)
            return tmp_set, len(unique_pids), len(idxs)

        def _extract_new_split(split_dict, img_dir):
            train_idxs = split_dict['train_idx'].flatten() - 1  # index-0
            pids = split_dict['labels'].flatten()
            train_pids = set(pids[train_idxs])
            pid2label = {pid: label for label, pid in enumerate(train_pids)}
            query_idxs = split_dict['query_idx'].flatten() - 1
            gallery_idxs = split_dict['gallery_idx'].flatten() - 1
            filelist = split_dict['filelist'].flatten()
            train_info = _extract_set(filelist, pids, pid2label, train_idxs, img_dir, relabel=True)
            query_info = _extract_set(filelist, pids, pid2label, query_idxs, img_dir, relabel=False)
            gallery_info = _extract_set(filelist, pids, pid2label, gallery_idxs, img_dir, relabel=False)
            return train_info, query_info, gallery_info

        print('Creating new split for detected images (767/700) ...')
        train_info, query_info, gallery_info = _extract_new_split(
            io.loadmat(self.split_new_det_mat_path),
            self.imgs_detected_dir
        )
        split = [{
            'train': train_info[0],
            'query': query_info[0],
            'gallery': gallery_info[0],
            'num_train_pids': train_info[1],
            'num_train_imgs': train_info[2],
            'num_query_pids': query_info[1],
            'num_query_imgs': query_info[2],
            'num_gallery_pids': gallery_info[1],
            'num_gallery_imgs': gallery_info[2]
        }]

        with PathManager.open(self.split_new_det_json_path, 'w') as f:
            json.dump(split, f, indent=4, separators=(',', ': '))

        print('Creating new split for labeled images (767/700) ...')
        train_info, query_info, gallery_info = _extract_new_split(
            io.loadmat(self.split_new_lab_mat_path),
            self.imgs_labeled_dir
        )
        split = [{
            'train': train_info[0],
            'query': query_info[0],
            'gallery': gallery_info[0],
            'num_train_pids': train_info[1],
            'num_train_imgs': train_info[2],
            'num_query_pids': query_info[1],
            'num_query_imgs': query_info[2],
            'num_gallery_pids': gallery_info[1],
            'num_gallery_imgs': gallery_info[2]
        }]
        with PathManager.open(self.split_new_lab_json_path, 'w') as f:
            json.dump(split, f, indent=4, separators=(',', ': '))