build.py 6.16 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# encoding: utf-8
"""
@author:  l1aoxingyu
@contact: sherlockliao01@gmail.com
"""

import logging
import os

import torch
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])

if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
    from torch._six import string_classes
else:
    string_classes = str

from collections import Mapping

from fastreid.config import configurable
from fastreid.utils import comm
from . import samplers
from .common import CommDataset
from .data_utils import DataLoaderX
from .datasets import DATASET_REGISTRY
from .transforms import build_transforms

__all__ = [
    "build_reid_train_loader",
    "build_reid_test_loader"
]

_root = os.getenv("FASTREID_DATASETS", "datasets")


def _train_loader_from_config(cfg, *, train_set=None, transforms=None, sampler=None, **kwargs):
    if transforms is None:
        transforms = build_transforms(cfg, is_train=True)

    if train_set is None:
        train_items = list()
        for d in cfg.DATASETS.NAMES:
            data = DATASET_REGISTRY.get(d)(root=_root, **kwargs)
            if comm.is_main_process():
                data.show_train()
            train_items.extend(data.train)

        train_set = CommDataset(train_items, transforms, relabel=True)

    if sampler is None:
        sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
        num_instance = cfg.DATALOADER.NUM_INSTANCE
        mini_batch_size = cfg.SOLVER.IMS_PER_BATCH // comm.get_world_size()

        logger = logging.getLogger(__name__)
        logger.info("Using training sampler {}".format(sampler_name))
        if sampler_name == "TrainingSampler":
            sampler = samplers.TrainingSampler(len(train_set))
        elif sampler_name == "NaiveIdentitySampler":
            sampler = samplers.NaiveIdentitySampler(train_set.img_items, mini_batch_size, num_instance)
        elif sampler_name == "BalancedIdentitySampler":
            sampler = samplers.BalancedIdentitySampler(train_set.img_items, mini_batch_size, num_instance)
        elif sampler_name == "SetReWeightSampler":
            set_weight = cfg.DATALOADER.SET_WEIGHT
            sampler = samplers.SetReWeightSampler(train_set.img_items, mini_batch_size, num_instance, set_weight)
        elif sampler_name == "ImbalancedDatasetSampler":
            sampler = samplers.ImbalancedDatasetSampler(train_set.img_items)
        else:
            raise ValueError("Unknown training sampler: {}".format(sampler_name))

    return {
        "train_set": train_set,
        "sampler": sampler,
        "total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
        "num_workers": cfg.DATALOADER.NUM_WORKERS,
    }


@configurable(from_config=_train_loader_from_config)
def build_reid_train_loader(
        train_set, *, sampler=None, total_batch_size, num_workers=0,
):
    """
    Build a dataloader for object re-identification with some default features.
    This interface is experimental.

    Returns:
        torch.utils.data.DataLoader: a dataloader.
    """

    mini_batch_size = total_batch_size // comm.get_world_size()

    batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, mini_batch_size, True)

    train_loader = DataLoaderX(
        comm.get_local_rank(),
        dataset=train_set,
        num_workers=num_workers,
        batch_sampler=batch_sampler,
        collate_fn=fast_batch_collator,
        pin_memory=True,
    )

    return train_loader


def _test_loader_from_config(cfg, *, dataset_name=None, test_set=None, num_query=0, transforms=None, **kwargs):
    if transforms is None:
        transforms = build_transforms(cfg, is_train=False)

    if test_set is None:
        assert dataset_name is not None, "dataset_name must be explicitly passed in when test_set is not provided"
        data = DATASET_REGISTRY.get(dataset_name)(root=_root, **kwargs)
        if comm.is_main_process():
            data.show_test()
        test_items = data.query + data.gallery
        test_set = CommDataset(test_items, transforms, relabel=False)

        # Update query number
        num_query = len(data.query)

    return {
        "test_set": test_set,
        "test_batch_size": cfg.TEST.IMS_PER_BATCH,
        "num_query": num_query,
    }


@configurable(from_config=_test_loader_from_config)
def build_reid_test_loader(test_set, test_batch_size, num_query, num_workers=4):
    """
    Similar to `build_reid_train_loader`. This sampler coordinates all workers to produce
    the exact set of all samples
    This interface is experimental.

    Args:
        test_set:
        test_batch_size:
        num_query:
        num_workers:

    Returns:
        DataLoader: a torch DataLoader, that loads the given reid dataset, with
        the test-time transformation.

    Examples:
    ::
        data_loader = build_reid_test_loader(test_set, test_batch_size, num_query)
        # or, instantiate with a CfgNode:
        data_loader = build_reid_test_loader(cfg, "my_test")
    """

    mini_batch_size = test_batch_size // comm.get_world_size()
    data_sampler = samplers.InferenceSampler(len(test_set))
    batch_sampler = torch.utils.data.BatchSampler(data_sampler, mini_batch_size, False)
    test_loader = DataLoaderX(
        comm.get_local_rank(),
        dataset=test_set,
        batch_sampler=batch_sampler,
        num_workers=num_workers,  # save some memory
        collate_fn=fast_batch_collator,
        pin_memory=True,
    )
    return test_loader, num_query


def trivial_batch_collator(batch):
    """
    A batch collator that does nothing.
    """
    return batch


def fast_batch_collator(batched_inputs):
    """
    A simple batch collator for most common reid tasks
    """
    elem = batched_inputs[0]
    if isinstance(elem, torch.Tensor):
        out = torch.zeros((len(batched_inputs), *elem.size()), dtype=elem.dtype)
        for i, tensor in enumerate(batched_inputs):
            out[i] += tensor
        return out

    elif isinstance(elem, Mapping):
        return {key: fast_batch_collator([d[key] for d in batched_inputs]) for key in elem}

    elif isinstance(elem, float):
        return torch.tensor(batched_inputs, dtype=torch.float64)
    elif isinstance(elem, int):
        return torch.tensor(batched_inputs)
    elif isinstance(elem, string_classes):
        return batched_inputs