"test_cases/run_wan_i2v.sh" did not exist on "f21528e750271dfb5b8271128b1d017815034d8a"
predictor.py 5.28 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# encoding: utf-8
"""
@author:  xingyu liao
@contact: sherlockliao01@gmail.com
"""

import atexit
import bisect
from collections import deque

import cv2
import torch
import torch.multiprocessing as mp

from fastreid.engine import DefaultPredictor

try:
    mp.set_start_method('spawn')
except RuntimeError:
    pass


class FeatureExtractionDemo(object):
    def __init__(self, cfg, parallel=False):
        """
        Args:
            cfg (CfgNode):
            parallel (bool) whether to run the model in different processes from visualization.:
                Useful since the visualization logic can be slow.
        """
        self.cfg = cfg
        self.parallel = parallel

        if parallel:
            self.num_gpus = torch.cuda.device_count()
            self.predictor = AsyncPredictor(cfg, self.num_gpus)
        else:
            self.predictor = DefaultPredictor(cfg)

    def run_on_image(self, original_image):
        """

        Args:
            original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
                This is the format used by OpenCV.

        Returns:
            predictions (np.ndarray): normalized feature of the model.
        """
        # the model expects RGB inputs
        original_image = original_image[:, :, ::-1]
        # Apply pre-processing to image.
        image = cv2.resize(original_image, tuple(self.cfg.INPUT.SIZE_TEST[::-1]), interpolation=cv2.INTER_CUBIC)
        # Make shape with a new batch dimension which is adapted for
        # network input
        image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))[None]
        predictions = self.predictor(image)
        return predictions

    def run_on_loader(self, data_loader):
        if self.parallel:
            buffer_size = self.predictor.default_buffer_size

            batch_data = deque()

            for cnt, batch in enumerate(data_loader):
                batch_data.append(batch)
                self.predictor.put(batch["images"])

                if cnt >= buffer_size:
                    batch = batch_data.popleft()
                    predictions = self.predictor.get()
                    yield predictions, batch["targets"].cpu().numpy(), batch["camids"].cpu().numpy()

            while len(batch_data):
                batch = batch_data.popleft()
                predictions = self.predictor.get()
                yield predictions, batch["targets"].cpu().numpy(), batch["camids"].cpu().numpy()
        else:
            for batch in data_loader:
                predictions = self.predictor(batch["images"])
                yield predictions, batch["targets"].cpu().numpy(), batch["camids"].cpu().numpy()


class AsyncPredictor:
    """
    A predictor that runs the model asynchronously, possibly on >1 GPUs.
    Because when the amount of data is large.
    """

    class _StopToken:
        pass

    class _PredictWorker(mp.Process):
        def __init__(self, cfg, task_queue, result_queue):
            self.cfg = cfg
            self.task_queue = task_queue
            self.result_queue = result_queue
            super().__init__()

        def run(self):
            predictor = DefaultPredictor(self.cfg)

            while True:
                task = self.task_queue.get()
                if isinstance(task, AsyncPredictor._StopToken):
                    break
                idx, data = task
                result = predictor(data)
                self.result_queue.put((idx, result))

    def __init__(self, cfg, num_gpus: int = 1):
        """

        Args:
            cfg (CfgNode):
            num_gpus (int): if 0, will run on CPU
        """
        num_workers = max(num_gpus, 1)
        self.task_queue = mp.Queue(maxsize=num_workers * 3)
        self.result_queue = mp.Queue(maxsize=num_workers * 3)
        self.procs = []
        for gpuid in range(max(num_gpus, 1)):
            cfg = cfg.clone()
            cfg.defrost()
            cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
            self.procs.append(
                AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
            )

        self.put_idx = 0
        self.get_idx = 0
        self.result_rank = []
        self.result_data = []

        for p in self.procs:
            p.start()

        atexit.register(self.shutdown)

    def put(self, image):
        self.put_idx += 1
        self.task_queue.put((self.put_idx, image))

    def get(self):
        self.get_idx += 1
        if len(self.result_rank) and self.result_rank[0] == self.get_idx:
            res = self.result_data[0]
            del self.result_data[0], self.result_rank[0]
            return res

        while True:
            # Make sure the results are returned in the correct order
            idx, res = self.result_queue.get()
            if idx == self.get_idx:
                return res
            insert = bisect.bisect(self.result_rank, idx)
            self.result_rank.insert(insert, idx)
            self.result_data.insert(insert, res)

    def __len__(self):
        return self.put_idx - self.get_idx

    def __call__(self, image):
        self.put(image)
        return self.get()

    def shutdown(self):
        for _ in self.procs:
            self.task_queue.put(AsyncPredictor._StopToken())

    @property
    def default_buffer_size(self):
        return len(self.procs) * 5