inference_tryon.py 21.4 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright (c) Alibaba, Inc. and its affiliates.
# Modified from the original implementation at https://github.com/modelscope/facechain/pull/104.
import json
import os
import sys

import cv2
import numpy as np
import torch
from PIL import Image
from skimage import transform
# from controlnet_aux import OpenposeDetector
from dwpose import DWposeDetector
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, \
    StableDiffusionControlNetInpaintPipeline, ControlNetModel, UniPCMultistepScheduler
from facechain.utils import snapshot_download
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from torch import multiprocessing
from transformers import pipeline as tpipeline

from facechain.data_process.preprocessing import Blipv2
from facechain.merge_lora import merge_lora


def _data_process_fn_process(input_img_dir):
    Blipv2()(input_img_dir)


def concatenate_images(images):
    heights = [img.shape[0] for img in images]
    max_width = sum([img.shape[1] for img in images])

    concatenated_image = np.zeros((max(heights), max_width, 3), dtype=np.uint8)
    x_offset = 0
    for img in images:
        concatenated_image[0:img.shape[0], x_offset:x_offset + img.shape[1], :] = img
        x_offset += img.shape[1]
    return concatenated_image


def data_process_fn(input_img_dir, use_data_process):
    ## TODO add face quality filter
    if use_data_process:
        ## TODO

        _process = multiprocessing.Process(target=_data_process_fn_process, args=(input_img_dir,))
        _process.start()
        _process.join()

    return os.path.join(str(input_img_dir) + '_labeled', "metadata.jsonl")


def call_face_crop(det_pipeline, image, crop_ratio):
    det_result = det_pipeline(image)
    bboxes = det_result['boxes']
    keypoints = det_result['keypoints']
    area = 0
    idx = 0
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        area_tmp = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
        if area_tmp > area:
            area = area_tmp
            idx = i
    bbox = bboxes[idx]
    keypoint = keypoints[idx]
    points_array = np.zeros((5, 2))
    for k in range(5):
        points_array[k, 0] = keypoint[2 * k]
        points_array[k, 1] = keypoint[2 * k + 1]
    w, h = image.size
    face_w = bbox[2] - bbox[0]
    face_h = bbox[3] - bbox[1]
    bbox[0] = np.clip(np.array(bbox[0], np.int32) - face_w * (crop_ratio - 1) / 2, 0, w - 1)
    bbox[1] = np.clip(np.array(bbox[1], np.int32) - face_h * (crop_ratio - 1) / 2, 0, h - 1)
    bbox[2] = np.clip(np.array(bbox[2], np.int32) + face_w * (crop_ratio - 1) / 2, 0, w - 1)
    bbox[3] = np.clip(np.array(bbox[3], np.int32) + face_h * (crop_ratio - 1) / 2, 0, h - 1)
    bbox = np.array(bbox, np.int32)
    return bbox, points_array


def crop_and_paste(Source_image, Source_image_mask, Target_image, Source_Five_Point, Target_Five_Point, Source_box, use_warp=True):
    if use_warp:
        Source_Five_Point = np.reshape(Source_Five_Point, [5, 2]) - np.array(Source_box[:2])
        Target_Five_Point = np.reshape(Target_Five_Point, [5, 2])

        Crop_Source_image = Source_image.crop(np.int32(Source_box))
        Crop_Source_image_mask = Source_image_mask.crop(np.int32(Source_box))
        Source_Five_Point, Target_Five_Point = np.array(Source_Five_Point), np.array(Target_Five_Point)

        tform = transform.SimilarityTransform()
        tform.estimate(Source_Five_Point, Target_Five_Point)
        M = tform.params[0:2, :]

        warped = cv2.warpAffine(np.array(Crop_Source_image), M, np.shape(Target_image)[:2][::-1], borderValue=0.0)
        warped_mask = cv2.warpAffine(np.array(Crop_Source_image_mask), M, np.shape(Target_image)[:2][::-1], borderValue=0.0)

        mask = np.float32(warped_mask == 0)
        output = mask * np.float32(Target_image) + (1 - mask) * np.float32(warped)
    else:
        mask = np.float32(np.array(Source_image_mask) == 0)
        output = mask * np.float32(Target_image) + (1 - mask) * np.float32(Source_image)
    return output, mask


def segment(segmentation_pipeline, img, ksize=0, return_human=False, return_cloth=False, return_hand=False):
    if True:
        result = segmentation_pipeline(img)
        masks = result['masks']
        scores = result['scores']
        labels = result['labels']
        if len(masks) == 0:
            return
        h, w = masks[0].shape
        mask_face = np.zeros((h, w))
        mask_hair = np.zeros((h, w))
        mask_neck = np.zeros((h, w))
        mask_cloth = np.zeros((h, w))
        mask_human = np.zeros((h, w))
        mask_hands = np.zeros((h, w))
        for i in range(len(labels)):
            if scores[i] > 0.8:
                if labels[i] == 'Torso-skin':
                    mask_neck += masks[i]
                elif labels[i] == 'Face':
                    mask_face += masks[i]
                elif labels[i] == 'Human':
                    if np.sum(masks[i]) > np.sum(mask_human):
                        mask_human = masks[i]
                elif labels[i] == 'Hair':
                    mask_hair += masks[i]
                elif labels[i] == 'UpperClothes' or labels[i] == 'Coat' or labels[i] == 'Dress' or labels[i] == 'Pants' or labels[i] == 'Skirt':
                    mask_cloth += masks[i]
                elif labels[i] == 'Left-arm' or labels[i] == 'Right-arm':
                    mask_hands += masks[i]
        mask_face = np.clip(mask_face * mask_human, 0, 1)
        mask_hair = np.clip(mask_hair * mask_human, 0, 1)
        mask_neck = np.clip(mask_neck * mask_human, 0, 1)
        mask_cloth = np.clip(mask_cloth * mask_human, 0, 1)
        mask_human = np.clip(mask_human, 0, 1)
        mask_hands = np.clip(mask_hands * mask_human, 0, 1)

        if return_cloth:
            if ksize > 0:
                kernel = np.ones((ksize, ksize))
                soft_mask = cv2.erode(mask_cloth, kernel, iterations=1) 
                return soft_mask
            else:
                return mask_cloth
        if return_hand:
            return mask_hands
        if return_human:
            mask_head = np.clip(mask_face + mask_hair + mask_neck, 0, 1)
            kernel = np.ones((ksize, ksize))
            dilated_head = cv2.dilate(mask_head, kernel, iterations=1)
            mask_human = np.clip(mask_human - dilated_head + mask_cloth, 0, 1)
            return mask_human
        if np.sum(mask_face) > 0:
            soft_mask = np.clip(mask_face, 0, 1)
            if ksize > 0:
                # kernel_size = int(np.sqrt(np.sum(soft_mask)) * ksize)
                kernel = np.ones((ksize, ksize))
                soft_mask = cv2.dilate(soft_mask, kernel, iterations=1)               
        else:
            soft_mask = mask_face

    return soft_mask


def crop_bottom(pil_file, width):
    if width == 512:
        height = 768
    else:
        height = 1152
    w, h = pil_file.size
    factor = w / width
    new_h = int(h / factor)
    pil_file = pil_file.resize((width, new_h))
    crop_h = min(int(new_h / 32) * 32, height)
    array_file = np.array(pil_file)
    array_file = array_file[:crop_h, :, :]
    output_file = Image.fromarray(array_file)
    return output_file


def img2img_multicontrol(img, control_image, controlnet_conditioning_scale, pipe, mask, pos_prompt, neg_prompt,
                         strength, num=1, use_ori=False):
    image_mask = Image.fromarray(np.uint8(mask * 255))
    image_human = []
    for i in range(num):
        image_human.append(pipe(image=img, mask_image=image_mask, control_image=control_image, prompt=pos_prompt,
                                negative_prompt=neg_prompt, guidance_scale=7, strength=strength, num_inference_steps=40,
                                controlnet_conditioning_scale=controlnet_conditioning_scale,
                                num_images_per_prompt=1).images[0])
        if use_ori:
            image_human[i] = Image.fromarray((np.array(image_human[i]) * mask[:,:,None] + np.array(img) * (1 - mask[:,:,None])).astype(np.uint8))
    return image_human


def main_diffusion_inference_tryon(inpaint_image, strength, output_img_size, pos_prompt, neg_prompt,
                                     input_img_dir, base_model_path, style_model_path, lora_model_path,
                                     multiplier_style=0.05,
                                     multiplier_human=1.0):
    if style_model_path is None:
        model_dir = snapshot_download('Cherrytest/zjz_mj_jiyi_small_addtxt_fromleo', revision='v1.0.0')
        style_model_path = os.path.join(model_dir, 'zjz_mj_jiyi_small_addtxt_fromleo.safetensors')

    segmentation_pipeline = pipeline(Tasks.image_segmentation, 'damo/cv_resnet101_image-multiple-human-parsing')
    det_pipeline = pipeline(Tasks.face_detection, 'damo/cv_ddsar_face-detection_iclr23-damofd')
    model_dir = snapshot_download('damo/face_chain_control_model', revision='v1.0.1')
    model_dir0 = snapshot_download('damo/face_chain_control_model', revision='v1.0.2')
    model_dir1 = snapshot_download('ly261666/cv_wanx_style_model',revision='v1.0.3')

    if output_img_size == 512:
        dtype = torch.float32
    else:
        dtype = torch.float16

    train_dir = str(input_img_dir) + '_labeled'
    add_prompt_style = []
    f = open(os.path.join(train_dir, 'metadata.jsonl'), 'r')
    tags_all = []
    cnt = 0
    cnts_trigger = np.zeros(6)
    for line in f:
        cnt += 1
        data = json.loads(line)['text'].split(', ')
        tags_all.extend(data)
        if data[1] == 'a boy':
            cnts_trigger[0] += 1
        elif data[1] == 'a girl':
            cnts_trigger[1] += 1
        elif data[1] == 'a handsome man':
            cnts_trigger[2] += 1
        elif data[1] == 'a beautiful woman':
            cnts_trigger[3] += 1
        elif data[1] == 'a mature man':
            cnts_trigger[4] += 1
        elif data[1] == 'a mature woman':
            cnts_trigger[5] += 1
        else:
            print('Error.')
    f.close()

    attr_idx = np.argmax(cnts_trigger)
    trigger_styles = ['a boy, children, ', 'a girl, children, ', 'a handsome man, ', 'a beautiful woman, ',
                      'a mature man, ', 'a mature woman, ']
    trigger_style = '(<fcsks>:10), ' + trigger_styles[attr_idx]
    if attr_idx == 2 or attr_idx == 4:
        neg_prompt += ', children'
    
    neg_prompt += ', blurry, blurry background'

    for tag in tags_all:
        if tags_all.count(tag) > 0.5 * cnt:
            if ('glasses' in tag or 'smile' in tag or 'hair' in tag):
                if not tag in add_prompt_style:
                    add_prompt_style.append(tag)

    if len(add_prompt_style) > 0:
        add_prompt_style = ", ".join(add_prompt_style) + ', '
    else:
        add_prompt_style = ''
    
    print(add_prompt_style)

    if isinstance(inpaint_image, str): 
        inpaint_im = Image.open(inpaint_image)
    else:
        inpaint_im = inpaint_image
    inpaint_im = crop_bottom(inpaint_im, output_img_size)
    w, h = inpaint_im.size
    
    dwprocessor = DWposeDetector(os.path.join(model_dir0, 'dwpose_models'))
    openpose_image, handbox = dwprocessor(np.array(inpaint_im, np.uint8), include_body=True, include_hand=True, include_face=False, return_handbox=True)
    openpose_image = Image.fromarray(openpose_image)
    openpose_image.save('openpose.png')

    controlnet = [
        ControlNetModel.from_pretrained(os.path.join(model_dir, "model_controlnet/control_v11p_sd15_openpose"), torch_dtype=dtype),
        ControlNetModel.from_pretrained(os.path.join(model_dir, 'model_controlnet/control_v11p_sd15_depth'),
                                        torch_dtype=dtype),
        ControlNetModel.from_pretrained(os.path.join(model_dir1, "contronet-canny"), torch_dtype=dtype)
    ]
    pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(base_model_path, controlnet=controlnet,
                                                                    torch_dtype=dtype, safety_checker=None)
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    pipe = merge_lora(pipe, style_model_path, multiplier_style, from_safetensor=True)
    pipe = merge_lora(pipe, lora_model_path, multiplier_human, from_safetensor=False)
    pipe = pipe.to("cuda")

    images_human = []
    mask = segment(segmentation_pipeline, inpaint_im, return_hand=True)
    mask1 = segment(segmentation_pipeline, inpaint_im, ksize=5, return_human=True)

    canny_image = cv2.Canny(np.array(inpaint_im, np.uint8), 80, 200)[:, :, None]
    canny_image = (canny_image * mask1[:, :, None]).astype(np.uint8)
    canny_image = Image.fromarray(np.concatenate([canny_image, canny_image, canny_image], axis=2))
    canny_image.save('canny.png')

    depth_estimator = tpipeline('depth-estimation', os.path.join(model_dir, 'model_controlnet/dpt-large'))
    depth_im = np.zeros((h, w))
    for hbox in handbox:
        depth_input = Image.fromarray(np.array(inpaint_im)[hbox[1]:hbox[3], hbox[0]:hbox[2]])
        depth_rst = depth_estimator(depth_input)['depth']
        depth_rst = np.array(depth_rst)
        depth_im[hbox[1]:hbox[3], hbox[0]:hbox[2]] = depth_rst
    depth_im = depth_im[:, :, None]
    depth_im = np.concatenate([depth_im, depth_im, depth_im], axis=2)
    depth_im = (depth_im * mask[:, :, None]).astype(np.uint8)
    depth_im = Image.fromarray(depth_im)
    depth_im.save('depth.png')

    for i in range(1):
        read_control = [openpose_image, depth_im, canny_image]
        cloth_mask_warp = segment(segmentation_pipeline, inpaint_im, return_cloth=True, ksize=5)
        cloth_mask = segment(segmentation_pipeline, inpaint_im, return_cloth=True, ksize=15)
        inpaint_with_mask = (cloth_mask_warp[:,:,None] * np.array(inpaint_im))[:,:,::-1]
        inpaint_mask = 1.0 - cloth_mask
        cv2.imwrite('inpaint_with_mask_{}.png'.format(i), inpaint_with_mask)
        print('Finishing segmenting images.')
        images_human.extend(img2img_multicontrol(inpaint_im, read_control, [1.0, 0.2, 0.4], pipe, inpaint_mask,
                                                 trigger_style + add_prompt_style + pos_prompt, neg_prompt,
                                                 strength=strength))

    for i in range(1):
        soft_cloth_mask_warp = cv2.GaussianBlur(cloth_mask_warp, (5, 5), 0, 0)
        image_human = (np.array(images_human[i]) * (1.0 - soft_cloth_mask_warp[:,:,None]) + np.array(inpaint_im) * soft_cloth_mask_warp[:,:,None]).astype(np.uint8)
        images_human[i] = Image.fromarray(image_human)
        images_human[i].save('inference_{}.png'.format(i))

    return images_human


def stylization_fn(use_stylization, rank_results):
    if use_stylization:
        ## TODO
        pass
    else:
        return rank_results


def main_model_inference(inpaint_image, strength, output_img_size,
                         pos_prompt, neg_prompt, style_model_path, multiplier_style, multiplier_human, use_main_model,
                         input_img_dir=None, base_model_path=None, lora_model_path=None):

    if use_main_model:
        multiplier_style_kwargs = {'multiplier_style': multiplier_style} if multiplier_style is not None else {}
        multiplier_human_kwargs = {'multiplier_human': multiplier_human} if multiplier_human is not None else {}
        return main_diffusion_inference_tryon(inpaint_image, strength, output_img_size, pos_prompt, neg_prompt,
                                                input_img_dir, base_model_path, style_model_path, lora_model_path,
                                                **multiplier_style_kwargs, **multiplier_human_kwargs)


def select_high_quality_face(input_img_dir):
    input_img_dir = str(input_img_dir) + '_labeled'
    quality_score_list = []
    abs_img_path_list = []
    ## TODO
    face_quality_func = pipeline(Tasks.face_quality_assessment, 'damo/cv_manual_face-quality-assessment_fqa',
                                 model_revision='v2.0')

    for img_name in os.listdir(input_img_dir):
        if img_name.endswith('jsonl') or img_name.startswith('.ipynb') or img_name.startswith('.safetensors'):
            continue

        if img_name.endswith('jpg') or img_name.endswith('png'):
            abs_img_name = os.path.join(input_img_dir, img_name)
            face_quality_score = face_quality_func(abs_img_name)[OutputKeys.SCORES]
            if face_quality_score is None:
                quality_score_list.append(0)
            else:
                quality_score_list.append(face_quality_score[0])
            abs_img_path_list.append(abs_img_name)

    sort_idx = np.argsort(quality_score_list)[::-1]
    print('Selected face: ' + abs_img_path_list[sort_idx[0]])

    return Image.open(abs_img_path_list[sort_idx[0]])


def face_swap_fn(use_face_swap, gen_results, template_face):
    if use_face_swap:
        ## TODO
        out_img_list = []
        image_face_fusion = pipeline('face_fusion_torch',
                                     model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.5')
        segmentation_pipeline = pipeline(Tasks.image_segmentation, 'damo/cv_resnet101_image-multiple-human-parsing')
        for img in gen_results:
            result = image_face_fusion(dict(template=img, user=template_face))[OutputKeys.OUTPUT_IMG]
            # face_mask = segment(segmentation_pipeline, img, ksize=10)
            # result = (result * face_mask[:,:,None] + np.array(img)[:,:,::-1] * (1 - face_mask[:,:,None])).astype(np.uint8)
            out_img_list.append(result)
        return out_img_list
    else:
        ret_results = []
        for img in gen_results:
            ret_results.append(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
        return ret_results


def post_process_fn(use_post_process, swap_results_ori, selected_face, num_gen_images):
    if use_post_process:
        sim_list = []
        ## TODO
        face_recognition_func = pipeline(Tasks.face_recognition, 'damo/cv_ir_face-recognition-ood_rts',
                                         model_revision='v2.5')
        face_det_func = pipeline(task=Tasks.face_detection, model='damo/cv_ddsar_face-detection_iclr23-damofd',
                                 model_revision='v1.1')
        swap_results = swap_results_ori

        select_face_emb = face_recognition_func(selected_face)[OutputKeys.IMG_EMBEDDING][0]

        for img in swap_results:
            emb = face_recognition_func(img)[OutputKeys.IMG_EMBEDDING]
            if emb is None or select_face_emb is None:
                sim_list.append(0)
            else:
                sim = np.dot(emb, select_face_emb)
                sim_list.append(sim.item())
        sort_idx = np.argsort(sim_list)[::-1]

        return np.array(swap_results)[sort_idx[:min(int(num_gen_images), len(swap_results))]]
    else:
        return np.array(swap_results_ori)


class GenPortrait_tryon:
    def __init__(self, inpaint_img, strength,
                 pos_prompt, neg_prompt, style_model_path, multiplier_style, multiplier_human,
                 use_main_model=True, use_face_swap=True,
                 use_post_process=True, use_stylization=True):
        self.use_main_model = use_main_model
        self.use_face_swap = use_face_swap
        self.use_post_process = use_post_process
        self.use_stylization = use_stylization
        self.multiplier_style = multiplier_style
        self.multiplier_human = multiplier_human
        self.style_model_path = style_model_path
        self.pos_prompt = pos_prompt
        self.neg_prompt = neg_prompt
        self.inpaint_img = inpaint_img
        self.strength = strength

    def __call__(self, input_img_dir=None, base_model_path=None,
                 lora_model_path=None, sub_path=None, revision=None):
        base_model_path = snapshot_download(base_model_path, revision=revision)
        if sub_path is not None and len(sub_path) > 0:
            base_model_path = os.path.join(base_model_path, sub_path)

        gen_results = main_model_inference(self.inpaint_img, self.strength, 768,
                                           self.pos_prompt, self.neg_prompt, 
                                           self.style_model_path, self.multiplier_style, self.multiplier_human,
                                           self.use_main_model, input_img_dir=input_img_dir,
                                           lora_model_path=lora_model_path, base_model_path=base_model_path)
        # select_high_quality_face PIL
        selected_face = select_high_quality_face(input_img_dir)
        # face_swap cv2
        swap_results = face_swap_fn(self.use_face_swap, gen_results, selected_face)
        # pose_process
        final_gen_results_final = swap_results

        outputs = final_gen_results_final
        outputs_RGB = []
        for out_tmp in outputs:
            outputs_RGB.append(cv2.cvtColor(out_tmp, cv2.COLOR_BGR2RGB))
        image_path = './lora_result.png'
        if len(outputs) > 0:
            result = concatenate_images(outputs)
            cv2.imwrite(image_path, result)

        return final_gen_results_final

def compress_image(input_path, target_size):
    output_path = change_extension_to_jpg(input_path)

    image = cv2.imread(input_path)
    
    quality = 95
    try:
        while cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, quality])[1].size > target_size:
            quality -= 5
    except:
        import pdb;pdb.set_trace()

    compressed_image = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tostring()

    with open(output_path, 'wb') as f:
        f.write(compressed_image)
    return output_path


def change_extension_to_jpg(image_path):

    base_name = os.path.basename(image_path)
    new_base_name = os.path.splitext(base_name)[0] + ".jpg"

    directory = os.path.dirname(image_path)

    new_image_path = os.path.join(directory, new_base_name)
    return new_image_path