preprocessing.py 13.4 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Alibaba, Inc. and its affiliates.

import json
import math
import os
import shutil

import cv2
import numpy as np
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from PIL import Image
from tqdm import tqdm

from .deepbooru import DeepDanbooru



def crop_and_resize(im, bbox):
    h, w, _ = im.shape
    thre = 0.35/1.15
    maxf = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
    cx = (bbox[2] + bbox[0]) / 2
    cy = (bbox[3] + bbox[1]) / 2
    lenp = int(maxf / thre)
    yc = 0.5/1.15
    xc = 0.5
    xmin = int(cx - xc * lenp)
    xmax = xmin + lenp
    ymin = int(cy - yc * lenp)
    ymax = ymin + lenp
    x1 = 0
    x2 = lenp
    y1 = 0
    y2 = lenp
    if xmin < 0:
        x1 = -xmin
        xmin = 0
    if xmax > w:
        x2 = w - (xmax - lenp)
        xmax = w
    if ymin < 0:
        y1 = -ymin
        ymin = 0
    if ymax > h:
        y2 = h - (ymax - lenp)
        ymax = h
    imc = (np.ones((lenp, lenp, 3)) * 255).astype(np.uint8)
    imc[y1:y2, x1:x2, :] = im[ymin:ymax, xmin:xmax, :]
    imr = cv2.resize(imc, (512, 512))
    return imr


def pad_to_square(im):
    h, w, _ = im.shape
    ns = int(max(h, w) * 1.5)
    im = cv2.copyMakeBorder(im, int((ns - h) / 2), (ns - h) - int((ns - h) / 2), int((ns - w) / 2),
                            (ns - w) - int((ns - w) / 2), cv2.BORDER_CONSTANT, 255)
    return im


def post_process_naive(result_list, score_gender, score_age):
    # determine trigger word
    gender = np.argmax(score_gender)
    age = np.argmax(score_age)
    if age < 2:
        if gender == 0:
            tag_a_g = ['a boy', 'children']
        else:
            tag_a_g = ['a girl', 'children']
    elif age > 4:
        if gender == 0:
            tag_a_g = ['a mature man']
        else:
            tag_a_g = ['a mature woman']
    else:
        if gender == 0:
            tag_a_g = ['a handsome man']
        else:
            tag_a_g = ['a beautiful woman']
    num_images = len(result_list)
    cnt_girl = 0
    cnt_boy = 0
    result_list_new = []
    for result in result_list:
        result_new = []
        result_new.extend(tag_a_g)
        ## don't include other infos for lora training
        #for tag in result:
        #    if tag == '1girl' or tag == '1boy':
        #        continue
        #    if tag[-4:] == '_man':
        #        continue
        #    if tag[-6:] == '_woman':
        #        continue
        #    if tag[-5:] == '_male':
        #        continue
        #    elif tag[-7:] == '_female':
        #        continue
        #    elif (
        #            tag == 'ears' or tag == 'head' or tag == 'face' or tag == 'lips' or tag == 'mouth' or tag == '3d' or tag == 'asian' or tag == 'teeth'):
        #        continue
        #    elif ('eye' in tag and not 'eyewear' in tag):
        #        continue
        #    elif ('nose' in tag or 'body' in tag):
        #        continue
        #    elif tag[-5:] == '_lips':
        #        continue
        #    else:
        #        result_new.append(tag)
        #    # import pdb;pdb.set_trace()
        ## result_new.append('slim body')
        result_list_new.append(result_new)

    return result_list_new


def transformation_from_points(points1, points2):
    points1 = points1.astype(np.float64)
    points2 = points2.astype(np.float64)
    c1 = np.mean(points1, axis=0)
    c2 = np.mean(points2, axis=0)
    points1 -= c1
    points2 -= c2
    s1 = np.std(points1)
    s2 = np.std(points2)
    if s1 < 1.0e-4:
        s1 = 1.0e-4
    points1 /= s1
    points2 /= s2
    U, S, Vt = np.linalg.svd(points1.T * points2)
    R = (U * Vt).T
    return np.vstack([np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), np.matrix([0., 0., 1.])])


def rotate(im, keypoints):
    h, w, _ = im.shape
    points_array = np.zeros((5, 2))
    dst_mean_face_size = 160
    dst_mean_face = np.asarray([0.31074522411511746, 0.2798131190011913,
                                0.6892073313037804, 0.2797830232679366,
                                0.49997367716346774, 0.5099309118810921,
                                0.35811903020866753, 0.7233174007629063,
                                0.6418878095835022, 0.7232890570786875])
    dst_mean_face = np.reshape(dst_mean_face, (5, 2)) * dst_mean_face_size

    for k in range(5):
        points_array[k, 0] = keypoints[2 * k]
        points_array[k, 1] = keypoints[2 * k + 1]

    pts1 = np.float64(np.matrix([[point[0], point[1]] for point in points_array]))
    pts2 = np.float64(np.matrix([[point[0], point[1]] for point in dst_mean_face]))
    trans_mat = transformation_from_points(pts1, pts2)
    if trans_mat[1, 1] > 1.0e-4:
        angle = math.atan(trans_mat[1, 0] / trans_mat[1, 1])
    else:
        angle = math.atan(trans_mat[0, 1] / trans_mat[0, 2])
    im = pad_to_square(im)
    ns = int(1.5 * max(h, w))
    M = cv2.getRotationMatrix2D((ns / 2, ns / 2), angle=-angle / np.pi * 180, scale=1.0)
    im = cv2.warpAffine(im, M=M, dsize=(ns, ns))
    return im


def get_mask_head(result):
    masks = result['masks']
    scores = result['scores']
    labels = result['labels']
    mask_hair = np.zeros((512, 512))
    mask_face = np.zeros((512, 512))
    mask_human = np.zeros((512, 512))
    for i in range(len(labels)):
        if scores[i] > 0.8:
            if labels[i] == 'Face':
                if np.sum(masks[i]) > np.sum(mask_face):
                    mask_face = masks[i]
            elif labels[i] == 'Human':
                if np.sum(masks[i]) > np.sum(mask_human):
                    mask_human = masks[i]
            elif labels[i] == 'Hair':
                if np.sum(masks[i]) > np.sum(mask_hair):
                    mask_hair = masks[i]
    mask_head = np.clip(mask_hair + mask_face, 0, 1)
    ksize = max(int(np.sqrt(np.sum(mask_face)) / 20), 1)
    kernel = np.ones((ksize, ksize))
    mask_head = cv2.dilate(mask_head, kernel, iterations=1) * mask_human
    _, mask_head = cv2.threshold((mask_head * 255).astype(np.uint8), 127, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(mask_head, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    area = []
    for j in range(len(contours)):
        area.append(cv2.contourArea(contours[j]))
    max_idx = np.argmax(area)
    mask_head = np.zeros((512, 512)).astype(np.uint8)
    cv2.fillPoly(mask_head, [contours[max_idx]], 255)
    mask_head = mask_head.astype(np.float32) / 255
    mask_head = np.clip(mask_head + mask_face, 0, 1)
    mask_head = np.expand_dims(mask_head, 2)
    return mask_head


class Blipv2():
    def __init__(self):
        self.model = DeepDanbooru()
        self.skin_retouching = pipeline('skin-retouching-torch', model='damo/cv_unet_skin_retouching_torch', model_revision='v1.0.1')
        # ToDo: face detection
        self.face_detection = pipeline(task=Tasks.face_detection, model='damo/cv_ddsar_face-detection_iclr23-damofd', model_revision='v1.1')
        # self.mog_face_detection_func = pipeline(Tasks.face_detection, 'damo/cv_resnet101_face-detection_cvpr22papermogface')
        self.segmentation_pipeline = pipeline(Tasks.image_segmentation,
                                              'damo/cv_resnet101_image-multiple-human-parsing', model_revision='v1.0.1')
        self.fair_face_attribute_func = pipeline(Tasks.face_attribute_recognition,
                                                 'damo/cv_resnet34_face-attribute-recognition_fairface', model_revision='v2.0.2')
        self.facial_landmark_confidence_func = pipeline(Tasks.face_2d_keypoints,
                                                        'damo/cv_manual_facial-landmark-confidence_flcm', model_revision='v2.5')

    def __call__(self, imdir):
        self.model.start()
        savedir = str(imdir) + '_labeled'
        shutil.rmtree(savedir, ignore_errors=True)
        os.makedirs(savedir, exist_ok=True)

        imlist = os.listdir(imdir)
        result_list = []
        imgs_list = []

        cnt = 0
        tmp_path = os.path.join(savedir, 'tmp.png')
        for imname in imlist:
            try:
                # if 1:
                if imname.startswith('.'):
                    continue
                img_path = os.path.join(imdir, imname)
                im = cv2.imread(img_path)
                h, w, _ = im.shape
                max_size = max(w, h)
                ratio = 1024 / max_size
                new_w = round(w * ratio)
                new_h = round(h * ratio)
                imt = cv2.resize(im, (new_w, new_h))
                cv2.imwrite(tmp_path, imt)
                result_det = self.face_detection(tmp_path)
                bboxes = result_det['boxes']
                if len(bboxes) > 1:
                    areas = []
                    for i in range(len(bboxes)):
                        bbox = bboxes[i]
                        areas.append((bbox[2] - bbox[0]) * (bbox[3] - bbox[1]))
                    areas = np.array(areas)
                    areas_new = np.sort(areas)[::-1]
                    idxs = np.argsort(areas)[::-1]
                    if areas_new[0] < 4 * areas_new[1]:
                        print('Detecting multiple faces, do not use image {}.'.format(imname))
                        continue
                    else:
                        keypoints = result_det['keypoints'][idxs[0]]
                elif len(bboxes) == 0:
                    print('Detecting no face, do not use image {}.'.format(imname))
                    continue
                else:
                    keypoints = result_det['keypoints'][0]

                im = rotate(im, keypoints)
                ns = im.shape[0]
                imt = cv2.resize(im, (1024, 1024))
                cv2.imwrite(tmp_path, imt)
                result_det = self.face_detection(tmp_path)
                bboxes = result_det['boxes']

                if len(bboxes) > 1:
                    areas = []
                    for i in range(len(bboxes)):
                        bbox = bboxes[i]
                        areas.append((bbox[2] - bbox[0]) * (bbox[3] - bbox[1]))
                    areas = np.array(areas)
                    areas_new = np.sort(areas)[::-1]
                    idxs = np.argsort(areas)[::-1]
                    if areas_new[0] < 4 * areas_new[1]:
                        print('Detecting multiple faces after rotation, do not use image {}.'.format(imname))
                        continue
                    else:
                        bbox = bboxes[idxs[0]]
                elif len(bboxes) == 0:
                    print('Detecting no face after rotation, do not use this image {}'.format(imname))
                    continue
                else:
                    bbox = bboxes[0]

                for idx in range(4):
                    bbox[idx] = bbox[idx] * ns / 1024
                imr = crop_and_resize(im, bbox)
                cv2.imwrite(tmp_path, imr)

                result = self.skin_retouching(tmp_path)
                if (result is None or (result[OutputKeys.OUTPUT_IMG] is None)):
                    print('Cannot do skin retouching, do not use this image.')
                    continue
                cv2.imwrite(tmp_path, result[OutputKeys.OUTPUT_IMG])

                result = self.segmentation_pipeline(tmp_path)
                mask_head = get_mask_head(result)
                im = cv2.imread(tmp_path)
                im = im * mask_head + 255 * (1 - mask_head)
                # print(im.shape)

                raw_result = self.facial_landmark_confidence_func(im)
                if raw_result is None:
                    print('landmark quality fail...')
                    continue

                print(imname, raw_result['scores'][0])
                if float(raw_result['scores'][0]) < (1 - 0.145):
                    print('landmark quality fail...')
                    continue

                cv2.imwrite(os.path.join(savedir, '{}.png'.format(cnt)), im)
                imgs_list.append('{}.png'.format(cnt))
                img = Image.open(os.path.join(savedir, '{}.png'.format(cnt)))
                result = self.model.tag(img)
                print(result)
                attribute_result = self.fair_face_attribute_func(tmp_path)
                if cnt == 0:
                    score_gender = np.array(attribute_result['scores'][0])
                    score_age = np.array(attribute_result['scores'][1])
                else:
                    score_gender += np.array(attribute_result['scores'][0])
                    score_age += np.array(attribute_result['scores'][1])

                result_list.append(result.split(', '))
                cnt += 1
            except Exception as e:
                print('cathed for image process of ' + imname)
                print(f'Error: {e}')

        print(result_list)
        if len(result_list) == 0:
            print('Error: result is empty.')
            exit()
            # return os.path.join(savedir, "metadata.jsonl")

        result_list = post_process_naive(result_list, score_gender, score_age)
        self.model.stop()
        try:
            os.remove(tmp_path)
        except OSError as e:
            print(f"Failed to remove path {tmp_path}: {e}")

        out_json_name = os.path.join(savedir, "metadata.jsonl")
        fo = open(out_json_name, 'w')
        for i in range(len(result_list)):
            generated_text = ", ".join(result_list[i])
            print(imgs_list[i], generated_text)
            info_dict = {"file_name": imgs_list[i], "text": "<fcsks>, " + generated_text}
            fo.write(json.dumps(info_dict) + '\n')
        fo.close()
        return out_json_name