datapreparation.py 8.26 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import random
import esim_py
import torch
import h5py
import numpy as np
import math
import bisect

from pathlib import Path

project_dir = Path(__file__).resolve().parent.parent

import sys
sys.path.append(str(project_dir))

from others.event_utils.lib.representations.voxel_grid import events_to_voxel_torch
from glob import glob
# from PIL import Image
import cv2
import os


def package_images(image_root,
                   h5_path):
    for ip in glob(os.path.join(image_root, "*.png")):
        image = cv2.imread(ip)
        image = np.array(image)
        image_name = ip.split(os.sep)[-1].split('.')[0].split("_")[-1]
        
        with h5py.File(h5_path, 'a') as h5f:
            h5f.create_dataset(f"images/{image_name}", data=image, compression="gzip")
        

def vid2events(image_root,
               sensor_size_height,
               sensor_size_width):
    
    config = {
        'refractory_period': 1e-4,
        'CT_range': [0.05, 0.5],
        'max_CT': 0.5,
        'min_CT': 0.02,
        'mu': 1,
        'sigma': 0.1,
        'H': sensor_size_height,
        'W': sensor_size_width,
        'log_eps': 1e-3,
        'use_log': True,
    }

    Cp = random.uniform(config['CT_range'][0], config['CT_range'][1])
    Cn = random.gauss(config['mu'], config['sigma']) * Cp
    Cp = min(max(Cp, config['min_CT']), config['max_CT'])
    Cn = min(max(Cn, config['min_CT']), config['max_CT'])
    esim = esim_py.EventSimulator(Cp,
                                Cn,
                                config['refractory_period'],
                                config['log_eps'],
                                config['use_log'])

    events = esim.generateFromFolder(f"{image_root}/images", f"{image_root}/timestamps.txt") # Generate events with shape [N, 4]
    
    return events


def voxel_normalization(voxel):
    """
        normalize the voxel same as https://arxiv.org/abs/1912.01584 Section 3.1
        Params:
            voxel: torch.Tensor, shape is [num_bins, H, W]

        return:
            normalized voxel
    """
    # check if voxel all element is 0
    a,b,c = voxel.shape
    tmp = torch.zeros(a, b, c)
    if torch.equal(voxel, tmp):
        return voxel
    abs_voxel, _ = torch.sort(torch.abs(voxel).view(-1, 1).squeeze(1))
    first_non_zero_idx = torch.nonzero(abs_voxel)[0].item()
    non_zero_voxel = abs_voxel[first_non_zero_idx:]
    norm_idx = math.floor(non_zero_voxel.shape[0] * 0.98)
    ones = torch.ones_like(voxel)
    normed_voxel = torch.where(torch.abs(voxel) < non_zero_voxel[norm_idx], voxel / non_zero_voxel[norm_idx], voxel)
    normed_voxel = torch.where(normed_voxel >= non_zero_voxel[norm_idx], ones, normed_voxel)
    normed_voxel = torch.where(normed_voxel <= -non_zero_voxel[norm_idx], -ones, normed_voxel)
    return normed_voxel


def package_bidirectional_event_voxels(x, y, t, p, timestamp_list, backward, bins, sensor_size, h5_name, error_txt):
    """
        params:
            x: ndarray, x-position of events
            y: ndarray, y-position of events
            t: ndarray, timestamp of events
            p: ndarray, polarity of events
            backward: bool, if forward or backward
            timestamp_list: list, to split events via timestamp
            bins: voxel num_bins
        returns:
            no return.
    """
    # Step 1: convert data type
    assert x.shape == y.shape == t.shape == p.shape

    x = torch.from_numpy(x.astype(np.int16))
    y = torch.from_numpy(y.astype(np.int16))
    t = torch.from_numpy(t.astype(np.float32))
    p = torch.from_numpy(p.astype(np.int16))

    assert x.shape == y.shape == t.shape == p.shape

    # Step 2: select events between two frames according to timestamp
    temp = t.numpy().tolist()
    output = [
        temp[
            bisect.bisect_left(temp, timestamp_list[i]):bisect.bisect_left(temp, timestamp_list[i+1])
        ]
        for i in range(len(timestamp_list) - 1)
    ]

    # Debug: Check if data error!!!
    assert len(output) == len(timestamp_list) - 1, f"len(output) is {len(output)}, but len(timestamp_list) is {len(timestamp_list)}"
    sum_output = []
    sum = 0
    for i in range(len(output)):
        if len(output[i]) == 0:
            raise ValueError(f"{h5_name} len(output[{i}] == 0)")
        elif len(output[i]) == 1:
            raise ValueError(f"{h5_name} len(output[{i}] == 1)") 
        sum += len(output[i])
        sum_output.append(sum)

    assert len(sum_output) == len(output)

    # Step 3: After checking data, continue.
    start_idx = 0
    for voxel_idx in range(len(timestamp_list) - 1):

        if len(output[voxel_idx]) == 0 or len(output[voxel_idx]) == 1:
            print(f'{h5_name} len(output[{voxel_idx}])): ', len(
                output[voxel_idx]))
            with open(error_txt, 'a+') as f:
                f.write(h5_name + '\n')
            return
        end_idx = start_idx + len(output[voxel_idx])
        

        if end_idx > len(t):
            with open(error_txt, 'a+') as f:
                f.write(f"{h5_name} voxel_idx: {voxel_idx}, start_idx {start_idx} end_idx {end_idx} exceed bound." + '\n')
            print(f"{h5_name} voxel_idx: {voxel_idx}, start_idx {start_idx} end_idx {end_idx} with exceed bound len(t) {len(t)}.")
            return
        
        xs = x[start_idx:end_idx]
        ys = y[start_idx:end_idx]
        ts = t[start_idx:end_idx]
        ps = p[start_idx:end_idx]
        # print(len(xs), len(ys), len(ts), len(ps))
        if ts == torch.Size([]) or ts.shape == torch.Size([1]) or ts.shape == torch.Size([0]):
            with open(error_txt, 'a+') as f:
                f.write(f"{h5_name} len(output[{voxel_idx}]) backward {backward} start_idx {start_idx} end_idx {end_idx} is error! Please check the data." + '\n')
            print(f"{h5_name} len(output[{voxel_idx}]) backward {backward} start_idx {start_idx} end_idx {end_idx} is error! Please check the data.")
            return

        if backward:
            t_start = timestamp_list[voxel_idx]
            t_end = timestamp_list[voxel_idx + 1]
            xs = torch.flip(xs, dims=[0])
            ys = torch.flip(ys, dims=[0])
            ts = torch.flip(t_end - ts + t_start, dims=[0])
            ps = torch.flip(-ps, dims=[0])
            
        voxel = events_to_voxel_torch(
            xs, ys, ts, ps, bins, device=None, sensor_size=sensor_size)
        normed_voxel = voxel_normalization(voxel)
        np_voxel = normed_voxel.numpy()

        with h5py.File(h5_name, 'a') as events_file:
            if backward:
                events_file.create_dataset("voxels_b/{:06d}".format(
                    voxel_idx), data=np_voxel, dtype=np.dtype(np.float32), compression="gzip")
            else:
                events_file.create_dataset("voxels_f/{:06d}".format(
                    voxel_idx), data=np_voxel, dtype=np.dtype(np.float32), compression="gzip")
                
        start_idx = end_idx


def events(args):
    # 1. 创建事件
    events = vid2events(args.image_root,
                        args.sensor_size_height,
                        args.sensor_size_width)
    
    # 2. 时间 voxel grids
    timestamp_list = []
    with open(f"{args.image_root}/timestamps.txt", "r") as f:
        for line in f.readlines():
            timestamp_list.append(float(line.strip()))

    package_bidirectional_event_voxels(
        events[:, 0],
        events[:, 1],
        events[:, 2],
        events[:, 3],
        timestamp_list,
        args.backward,
        args.bins,
        (args.sensor_size_height, args.sensor_size_width),
        args.h5_path,
        args.error
    )


if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser()
    
    parser.add_argument("--image_root", help="图像存储根目录")
    
    parser.add_argument("--backward", action="store_true")
    
    parser.add_argument("--sensor_size_height", type=int)
    
    parser.add_argument("--sensor_size_width", type=int)
    
    parser.add_argument("--bins", type=int, default=5)
    
    parser.add_argument("--h5_path", type=str)
    
    parser.add_argument("--error", type=str, help="错误信息存储路径")
    
    args = parser.parse_args()
    
    if not os.path.exists(args.h5_path):
        print("处理图像")
        package_images(f"{args.image_root}/images", args.h5_path)
    else:
        print("已处理")
    
    print("backward?", args.backward)
    events(args)