registry.py 25.9 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Whenever you add an architecture to this page, please also update
`tests/models/registry.py` with example HuggingFace models for it.
"""
import importlib
import os
import pickle
import subprocess
import sys
import tempfile
from abc import ABC, abstractmethod
from collections.abc import Set
from dataclasses import dataclass, field
from functools import lru_cache
from typing import Callable, Optional, TypeVar, Union

import cloudpickle
import torch.nn as nn

from vllm.logger import init_logger

from .interfaces import (has_inner_state, has_noops, is_attention_free,
                         is_hybrid, supports_cross_encoding,
                         supports_multimodal, supports_pp,
                         supports_transcription, supports_v0_only)
from .interfaces_base import is_text_generation_model

logger = init_logger(__name__)

# yapf: disable
_TEXT_GENERATION_MODELS = {
    # [Decoder-only]
    "AquilaModel": ("llama", "LlamaForCausalLM"),
    "AquilaForCausalLM": ("llama", "LlamaForCausalLM"),  # AquilaChat2
    "ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
    "MiniMaxText01ForCausalLM": ("minimax_text_01", "MiniMaxText01ForCausalLM"),
    "MiniMaxM1ForCausalLM": ("minimax_text_01", "MiniMaxText01ForCausalLM"),
    # baichuan-7b, upper case 'C' in the class name
    "BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"),
    # baichuan-13b, lower case 'c' in the class name
    "BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"),
    "BambaForCausalLM": ("bamba", "BambaForCausalLM"),
    "BloomForCausalLM": ("bloom", "BloomForCausalLM"),
    "ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
    "ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
    "CohereForCausalLM": ("commandr", "CohereForCausalLM"),
    "Cohere2ForCausalLM": ("commandr", "CohereForCausalLM"),
    "DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
    "DeciLMForCausalLM": ("nemotron_nas", "DeciLMForCausalLM"),
    "DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
    "DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
    "DeepseekV3ForCausalLM": ("deepseek_v2", "DeepseekV3ForCausalLM"),
    "Dots1ForCausalLM": ("dots1", "Dots1ForCausalLM"),
    "ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
    "FalconForCausalLM": ("falcon", "FalconForCausalLM"),
    "Fairseq2LlamaForCausalLM": ("fairseq2_llama", "Fairseq2LlamaForCausalLM"),
    "GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
    "Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
    "Gemma3ForCausalLM": ("gemma3", "Gemma3ForCausalLM"),
    #TODO(ywang96): Support multimodal gemma3n
    "Gemma3nForConditionalGeneration": ("gemma3n", "Gemma3nForConditionalGeneration"),    # noqa: E501
    "GlmForCausalLM": ("glm", "GlmForCausalLM"),
    "Glm4ForCausalLM": ("glm4", "Glm4ForCausalLM"),
    "GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
    "GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
    "GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
    "GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
    "GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
    "GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"),
    "GraniteMoeHybridForCausalLM": ("granitemoehybrid", "GraniteMoeHybridForCausalLM"),   # noqa: E501
    "GraniteMoeSharedForCausalLM": ("granitemoeshared", "GraniteMoeSharedForCausalLM"),   # noqa: E501
    "GritLM": ("gritlm", "GritLM"),
    "Grok1ModelForCausalLM": ("grok1", "Grok1ForCausalLM"),
    "InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
    "InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
    "InternLM2VEForCausalLM": ("internlm2_ve", "InternLM2VEForCausalLM"),
    "InternLM3ForCausalLM": ("llama", "LlamaForCausalLM"),
    "JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
    "JambaForCausalLM": ("jamba", "JambaForCausalLM"),
    "LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
    # For decapoda-research/llama-*
    "LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
    "MambaForCausalLM": ("mamba", "MambaForCausalLM"),
    "FalconMambaForCausalLM": ("mamba", "MambaForCausalLM"),
    "FalconH1ForCausalLM":("falcon_h1", "FalconH1ForCausalLM"),
    "Mamba2ForCausalLM": ("mamba2", "Mamba2ForCausalLM"),
    "MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
    "MiniCPM3ForCausalLM": ("minicpm3", "MiniCPM3ForCausalLM"),
    "MistralForCausalLM": ("llama", "LlamaForCausalLM"),
    "MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
    "QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
    # transformers's mpt class has lower case
    "MptForCausalLM": ("mpt", "MPTForCausalLM"),
    "MPTForCausalLM": ("mpt", "MPTForCausalLM"),
    "MiMoForCausalLM": ("mimo", "MiMoForCausalLM"),
    "NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"),
    "NemotronHForCausalLM": ("nemotron_h", "NemotronHForCausalLM"),
    "OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
    "Olmo2ForCausalLM": ("olmo2", "Olmo2ForCausalLM"),
    "OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"),
    "OPTForCausalLM": ("opt", "OPTForCausalLM"),
    "OrionForCausalLM": ("orion", "OrionForCausalLM"),
    "PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"),
    "PhiForCausalLM": ("phi", "PhiForCausalLM"),
    "Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
    "Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"),
    "PhiMoEForCausalLM": ("phimoe", "PhiMoEForCausalLM"),
    "Plamo2ForCausalLM": ("plamo2", "Plamo2ForCausalLM"),
    "QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
    "Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
    "Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"),
    "Qwen3ForCausalLM": ("qwen3", "Qwen3ForCausalLM"),
    "Qwen3MoeForCausalLM": ("qwen3_moe", "Qwen3MoeForCausalLM"),
    "RWForCausalLM": ("falcon", "FalconForCausalLM"),
    "StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
    "StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"),
    "Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
    "SolarForCausalLM": ("solar", "SolarForCausalLM"),
    "TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"),
    "TeleFLMForCausalLM": ("teleflm", "TeleFLMForCausalLM"),
    "XverseForCausalLM": ("llama", "LlamaForCausalLM"),
    "Zamba2ForCausalLM": ("zamba2", "Zamba2ForCausalLM"),
    "Ernie4_5_ForCausalLM": ("ernie45", "Ernie4_5_ForCausalLM"),
    "Ernie4_5_MoeForCausalLM": ("ernie45_moe", "Ernie4_5_MoeForCausalLM"),
    # [Encoder-decoder]
    "BartModel": ("bart", "BartForConditionalGeneration"),
    "BartForConditionalGeneration": ("bart", "BartForConditionalGeneration"),
}

_EMBEDDING_MODELS = {
    # [Text-only]
    "BertModel": ("bert", "BertEmbeddingModel"),
    "DeciLMForCausalLM": ("nemotron_nas", "DeciLMForCausalLM"),
    "Gemma2Model": ("gemma2", "Gemma2ForCausalLM"),
    "GlmForCausalLM": ("glm", "GlmForCausalLM"),
    "GPT2ForSequenceClassification": ("gpt2", "GPT2ForSequenceClassification"),
    "GritLM": ("gritlm", "GritLM"),
    "GteModel": ("bert_with_rope", "SnowflakeGteNewModel"),
    "GteNewModel": ("bert_with_rope", "GteNewModel"),
    "InternLM2ForRewardModel": ("internlm2", "InternLM2ForRewardModel"),
    "JambaForSequenceClassification": ("jamba", "JambaForSequenceClassification"),  # noqa: E501
    "LlamaModel": ("llama", "LlamaForCausalLM"),
    **{
        # Multiple models share the same architecture, so we include them all
        k: (mod, arch) for k, (mod, arch) in _TEXT_GENERATION_MODELS.items()
        if arch == "LlamaForCausalLM"
    },
    "MistralModel": ("llama", "LlamaForCausalLM"),
    "ModernBertModel": ("modernbert", "ModernBertModel"),
    "NomicBertModel": ("bert_with_rope", "NomicBertModel"),
    "Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
    "Qwen2Model": ("qwen2", "Qwen2ForCausalLM"),
    "Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
    "Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
    "Qwen2ForProcessRewardModel": ("qwen2_rm", "Qwen2ForProcessRewardModel"),
    "RobertaForMaskedLM": ("roberta", "RobertaEmbeddingModel"),
    "RobertaModel": ("roberta", "RobertaEmbeddingModel"),
    "TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"),
    "XLMRobertaModel": ("roberta", "RobertaEmbeddingModel"),
    # [Multimodal]
    "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"),  # noqa: E501
    "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
    "Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"),  # noqa: E501
    # [Auto-converted (see adapters.py)]
    "Qwen2ForSequenceClassification": ("qwen2", "Qwen2ForCausalLM"),
    # Technically PrithviGeoSpatialMAE is a model that works on images, both in
    # input and output. I am adding it here because it piggy-backs on embedding
    # models for the time being.
    "PrithviGeoSpatialMAE": ("prithvi_geospatial_mae", "PrithviGeoSpatialMAE"),
}

_CROSS_ENCODER_MODELS = {
    "BertForSequenceClassification": ("bert", "BertForSequenceClassification"),
    "RobertaForSequenceClassification": ("roberta",
                                         "RobertaForSequenceClassification"),
    "XLMRobertaForSequenceClassification": ("roberta",
                                            "RobertaForSequenceClassification"),
    "ModernBertForSequenceClassification": ("modernbert",
                                            "ModernBertForSequenceClassification"),
    "Qwen3ForSequenceClassification": ("qwen3", "Qwen3ForSequenceClassification"), # noqa: E501
}

_MULTIMODAL_MODELS = {
    # [Decoder-only]
    "AriaForConditionalGeneration": ("aria", "AriaForConditionalGeneration"),
    "AyaVisionForConditionalGeneration": ("aya_vision", "AyaVisionForConditionalGeneration"),  # noqa: E501
    "Blip2ForConditionalGeneration": ("blip2", "Blip2ForConditionalGeneration"),
    "ChameleonForConditionalGeneration": ("chameleon", "ChameleonForConditionalGeneration"),  # noqa: E501
    "DeepseekVLV2ForCausalLM": ("deepseek_vl2", "DeepseekVLV2ForCausalLM"),
    "FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
    "Gemma3ForConditionalGeneration": ("gemma3_mm", "Gemma3ForConditionalGeneration"),  # noqa: E501
    "GLM4VForCausalLM": ("glm4v", "GLM4VForCausalLM"),
    "GraniteSpeechForConditionalGeneration": ("granite_speech", "GraniteSpeechForConditionalGeneration"),  # noqa: E501
    "H2OVLChatModel": ("h2ovl", "H2OVLChatModel"),
    "InternVLChatModel": ("internvl", "InternVLChatModel"),
    "Idefics3ForConditionalGeneration":("idefics3","Idefics3ForConditionalGeneration"),
    "SmolVLMForConditionalGeneration": ("smolvlm","SmolVLMForConditionalGeneration"),  # noqa: E501
    "KimiVLForConditionalGeneration": ("kimi_vl", "KimiVLForConditionalGeneration"),  # noqa: E501
    "LlavaForConditionalGeneration": ("llava", "LlavaForConditionalGeneration"),
    "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"),  # noqa: E501
    "LlavaNextVideoForConditionalGeneration": ("llava_next_video", "LlavaNextVideoForConditionalGeneration"),  # noqa: E501
    "LlavaOnevisionForConditionalGeneration": ("llava_onevision", "LlavaOnevisionForConditionalGeneration"),  # noqa: E501
    "MantisForConditionalGeneration": ("llava", "MantisForConditionalGeneration"),  # noqa: E501
    "MiniMaxVL01ForConditionalGeneration": ("minimax_vl_01", "MiniMaxVL01ForConditionalGeneration"),  # noqa: E501
    "MiniCPMO": ("minicpmo", "MiniCPMO"),
    "MiniCPMV": ("minicpmv", "MiniCPMV"),
    "Mistral3ForConditionalGeneration": ("mistral3", "Mistral3ForConditionalGeneration"),  # noqa: E501
    "MolmoForCausalLM": ("molmo", "MolmoForCausalLM"),
    "NVLM_D": ("nvlm_d", "NVLM_D_Model"),
    "Ovis": ("ovis", "Ovis"),
    "PaliGemmaForConditionalGeneration": ("paligemma", "PaliGemmaForConditionalGeneration"),  # noqa: E501
    "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
    "PixtralForConditionalGeneration": ("pixtral", "PixtralForConditionalGeneration"),  # noqa: E501
    "QwenVLForConditionalGeneration": ("qwen_vl", "QwenVLForConditionalGeneration"),  # noqa: E501
    "Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"),  # noqa: E501
    "Qwen2_5_VLForConditionalGeneration": ("qwen2_5_vl", "Qwen2_5_VLForConditionalGeneration"),  # noqa: E501
    "Qwen2AudioForConditionalGeneration": ("qwen2_audio", "Qwen2AudioForConditionalGeneration"),  # noqa: E501
    "Qwen2_5OmniModel": ("qwen2_5_omni_thinker", "Qwen2_5OmniThinkerForConditionalGeneration"),  # noqa: E501
    "Qwen2_5OmniForConditionalGeneration": ("qwen2_5_omni_thinker", "Qwen2_5OmniThinkerForConditionalGeneration"),  # noqa: E501
    "UltravoxModel": ("ultravox", "UltravoxModel"),
    "Phi4MMForCausalLM": ("phi4mm", "Phi4MMForCausalLM"),
    "TarsierForConditionalGeneration": ("tarsier", "TarsierForConditionalGeneration"),  # noqa: E501
    "Tarsier2ForConditionalGeneration": ("qwen2_vl", "Tarsier2ForConditionalGeneration"),  # noqa: E501
    # [Encoder-decoder]
    "Florence2ForConditionalGeneration": ("florence2", "Florence2ForConditionalGeneration"),  # noqa: E501
    "MllamaForConditionalGeneration": ("mllama", "MllamaForConditionalGeneration"),  # noqa: E501
    "Llama4ForConditionalGeneration": ("mllama4", "Llama4ForConditionalGeneration"),  # noqa: E501
    "SkyworkR1VChatModel": ("skyworkr1v", "SkyworkR1VChatModel"),
    "WhisperForConditionalGeneration": ("whisper", "WhisperForConditionalGeneration"),  # noqa: E501
}

_SPECULATIVE_DECODING_MODELS = {
    "MiMoMTPModel": ("mimo_mtp", "MiMoMTP"),
    "EAGLEModel": ("eagle", "EAGLE"),
    "EagleLlamaForCausalLM": ("llama_eagle", "EagleLlamaForCausalLM"),
    "EagleMiniCPMForCausalLM": ("minicpm_eagle", "EagleMiniCPMForCausalLM"),
    "Eagle3LlamaForCausalLM": ("llama_eagle3", "Eagle3LlamaForCausalLM"),
    "DeepSeekMTPModel": ("deepseek_mtp", "DeepSeekMTP"),
    "MedusaModel": ("medusa", "Medusa"),
    "MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"),
}

_TRANSFORMERS_MODELS = {
    "TransformersForCausalLM": ("transformers", "TransformersForCausalLM"),
}
# yapf: enable

_VLLM_MODELS = {
    **_TEXT_GENERATION_MODELS,
    **_EMBEDDING_MODELS,
    **_CROSS_ENCODER_MODELS,
    **_MULTIMODAL_MODELS,
    **_SPECULATIVE_DECODING_MODELS,
    **_TRANSFORMERS_MODELS,
}

# This variable is used as the args for subprocess.run(). We
# can modify  this variable to alter the args if needed. e.g.
# when we use par format to pack things together, sys.executable
# might not be the target we want to run.
_SUBPROCESS_COMMAND = [
    sys.executable, "-m", "vllm.model_executor.models.registry"
]


@dataclass(frozen=True)
class _ModelInfo:
    architecture: str
    is_text_generation_model: bool
    is_pooling_model: bool
    supports_cross_encoding: bool
    supports_multimodal: bool
    supports_pp: bool
    has_inner_state: bool
    is_attention_free: bool
    is_hybrid: bool
    has_noops: bool
    supports_transcription: bool
    supports_v0_only: bool

    @staticmethod
    def from_model_cls(model: type[nn.Module]) -> "_ModelInfo":
        return _ModelInfo(
            architecture=model.__name__,
            is_text_generation_model=is_text_generation_model(model),
            is_pooling_model=True,  # Can convert any model into a pooling model
            supports_cross_encoding=supports_cross_encoding(model),
            supports_multimodal=supports_multimodal(model),
            supports_pp=supports_pp(model),
            has_inner_state=has_inner_state(model),
            is_attention_free=is_attention_free(model),
            is_hybrid=is_hybrid(model),
            supports_transcription=supports_transcription(model),
            supports_v0_only=supports_v0_only(model),
            has_noops=has_noops(model),
        )


class _BaseRegisteredModel(ABC):

    @abstractmethod
    def inspect_model_cls(self) -> _ModelInfo:
        raise NotImplementedError

    @abstractmethod
    def load_model_cls(self) -> type[nn.Module]:
        raise NotImplementedError


@dataclass(frozen=True)
class _RegisteredModel(_BaseRegisteredModel):
    """
    Represents a model that has already been imported in the main process.
    """

    interfaces: _ModelInfo
    model_cls: type[nn.Module]

    @staticmethod
    def from_model_cls(model_cls: type[nn.Module]):
        return _RegisteredModel(
            interfaces=_ModelInfo.from_model_cls(model_cls),
            model_cls=model_cls,
        )

    def inspect_model_cls(self) -> _ModelInfo:
        return self.interfaces

    def load_model_cls(self) -> type[nn.Module]:
        return self.model_cls


@dataclass(frozen=True)
class _LazyRegisteredModel(_BaseRegisteredModel):
    """
    Represents a model that has not been imported in the main process.
    """
    module_name: str
    class_name: str

    # Performed in another process to avoid initializing CUDA
    def inspect_model_cls(self) -> _ModelInfo:
        return _run_in_subprocess(
            lambda: _ModelInfo.from_model_cls(self.load_model_cls()))

    def load_model_cls(self) -> type[nn.Module]:
        mod = importlib.import_module(self.module_name)
        return getattr(mod, self.class_name)


@lru_cache(maxsize=128)
def _try_load_model_cls(
    model_arch: str,
    model: _BaseRegisteredModel,
) -> Optional[type[nn.Module]]:
    from vllm.platforms import current_platform
    current_platform.verify_model_arch(model_arch)
    try:
        return model.load_model_cls()
    except Exception:
        logger.exception("Error in loading model architecture '%s'",
                         model_arch)
        return None


@lru_cache(maxsize=128)
def _try_inspect_model_cls(
    model_arch: str,
    model: _BaseRegisteredModel,
) -> Optional[_ModelInfo]:
    try:
        return model.inspect_model_cls()
    except Exception:
        logger.exception("Error in inspecting model architecture '%s'",
                         model_arch)
        return None


@dataclass
class _ModelRegistry:
    # Keyed by model_arch
    models: dict[str, _BaseRegisteredModel] = field(default_factory=dict)

    def get_supported_archs(self) -> Set[str]:
        return self.models.keys()

    def register_model(
        self,
        model_arch: str,
        model_cls: Union[type[nn.Module], str],
    ) -> None:
        """
        Register an external model to be used in vLLM.

        `model_cls` can be either:

        - A [`torch.nn.Module`][] class directly referencing the model.
        - A string in the format `<module>:<class>` which can be used to
          lazily import the model. This is useful to avoid initializing CUDA
          when importing the model and thus the related error
          `RuntimeError: Cannot re-initialize CUDA in forked subprocess`.
        """
        if not isinstance(model_arch, str):
            msg = f"`model_arch` should be a string, not a {type(model_arch)}"
            raise TypeError(msg)

        if model_arch in self.models:
            logger.warning(
                "Model architecture %s is already registered, and will be "
                "overwritten by the new model class %s.", model_arch,
                model_cls)

        if isinstance(model_cls, str):
            split_str = model_cls.split(":")
            if len(split_str) != 2:
                msg = "Expected a string in the format `<module>:<class>`"
                raise ValueError(msg)

            model = _LazyRegisteredModel(*split_str)
        elif isinstance(model_cls, type) and issubclass(model_cls, nn.Module):
            model = _RegisteredModel.from_model_cls(model_cls)
        else:
            msg = ("`model_cls` should be a string or PyTorch model class, "
                   f"not a {type(model_arch)}")
            raise TypeError(msg)

        self.models[model_arch] = model

    def _raise_for_unsupported(self, architectures: list[str]):
        all_supported_archs = self.get_supported_archs()

        if any(arch in all_supported_archs for arch in architectures):
            raise ValueError(
                f"Model architectures {architectures} failed "
                "to be inspected. Please check the logs for more details.")

        raise ValueError(
            f"Model architectures {architectures} are not supported for now. "
            f"Supported architectures: {all_supported_archs}")

    def _try_load_model_cls(self,
                            model_arch: str) -> Optional[type[nn.Module]]:
        if model_arch not in self.models:
            return None

        return _try_load_model_cls(model_arch, self.models[model_arch])

    def _try_inspect_model_cls(self, model_arch: str) -> Optional[_ModelInfo]:
        if model_arch not in self.models:
            return None

        return _try_inspect_model_cls(model_arch, self.models[model_arch])

    def _normalize_archs(
        self,
        architectures: Union[str, list[str]],
    ) -> list[str]:
        if isinstance(architectures, str):
            architectures = [architectures]
        if not architectures:
            logger.warning("No model architectures are specified")

        # filter out support architectures
        normalized_arch = list(
            filter(lambda model: model in self.models, architectures))

        # make sure Transformers backend is put at the last as a fallback
        if len(normalized_arch) != len(architectures):
            normalized_arch.append("TransformersForCausalLM")
        return normalized_arch

    def inspect_model_cls(
        self,
        architectures: Union[str, list[str]],
    ) -> tuple[_ModelInfo, str]:
        architectures = self._normalize_archs(architectures)

        for arch in architectures:
            model_info = self._try_inspect_model_cls(arch)
            if model_info is not None:
                return (model_info, arch)

        return self._raise_for_unsupported(architectures)

    def resolve_model_cls(
        self,
        architectures: Union[str, list[str]],
    ) -> tuple[type[nn.Module], str]:
        architectures = self._normalize_archs(architectures)

        for arch in architectures:
            model_cls = self._try_load_model_cls(arch)
            if model_cls is not None:
                return (model_cls, arch)

        return self._raise_for_unsupported(architectures)

    def is_text_generation_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.is_text_generation_model

    def is_pooling_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.is_pooling_model

    def is_cross_encoder_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.supports_cross_encoding

    def is_multimodal_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.supports_multimodal

    def is_pp_supported_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.supports_pp

    def model_has_inner_state(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.has_inner_state

    def is_attention_free_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.is_attention_free

    def is_hybrid_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.is_hybrid

    def is_noops_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.has_noops

    def is_transcription_model(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return model_cls.supports_transcription

    def is_v1_compatible(
        self,
        architectures: Union[str, list[str]],
    ) -> bool:
        model_cls, _ = self.inspect_model_cls(architectures)
        return not model_cls.supports_v0_only


ModelRegistry = _ModelRegistry({
    model_arch:
    _LazyRegisteredModel(
        module_name=f"vllm.model_executor.models.{mod_relname}",
        class_name=cls_name,
    )
    for model_arch, (mod_relname, cls_name) in _VLLM_MODELS.items()
})

_T = TypeVar("_T")


def _run_in_subprocess(fn: Callable[[], _T]) -> _T:
    # NOTE: We use a temporary directory instead of a temporary file to avoid
    # issues like https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file
    with tempfile.TemporaryDirectory() as tempdir:
        output_filepath = os.path.join(tempdir, "registry_output.tmp")

        # `cloudpickle` allows pickling lambda functions directly
        input_bytes = cloudpickle.dumps((fn, output_filepath))

        # cannot use `sys.executable __file__` here because the script
        # contains relative imports
        returned = subprocess.run(_SUBPROCESS_COMMAND,
                                  input=input_bytes,
                                  capture_output=True)

        # check if the subprocess is successful
        try:
            returned.check_returncode()
        except Exception as e:
            # wrap raised exception to provide more information
            raise RuntimeError(f"Error raised in subprocess:\n"
                               f"{returned.stderr.decode()}") from e

        with open(output_filepath, "rb") as f:
            return pickle.load(f)


def _run() -> None:
    # Setup plugins
    from vllm.plugins import load_general_plugins
    load_general_plugins()

    fn, output_file = pickle.loads(sys.stdin.buffer.read())

    result = fn()

    with open(output_file, "wb") as f:
        f.write(pickle.dumps(result))


if __name__ == "__main__":
    _run()