ernie45_moe.py 22.6 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# SPDX-License-Identifier: Apache-2.0

# Copyright 2025 The Baidu_Ernie team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only ErineMoE model compatible with HuggingFace weights."""
from collections.abc import Iterable
from typing import Any, Optional, Union

import torch
from torch import nn
from transformers import PretrainedConfig

from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               ReplicatedLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
    default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import F

from .interfaces import SupportsPP
from .utils import (PPMissingLayer, 
                    extract_layer_index, is_pp_missing_parameter,
                    make_empty_intermediate_tensors_factory, make_layers,
                    maybe_prefix)

logger = init_logger(__name__)


class Ernie4_5_MoeMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        use_bias: bool = False,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=use_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=use_bias,
                                           quant_config=quant_config,
                                           reduce_results=reduce_results,
                                           prefix=f"{prefix}.down_proj")
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up) 
        x, _ = self.down_proj(x)
        return x

class Ernie4_5_MoeMoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        
        layer_idx = extract_layer_index(prefix)
        self.layer_idx = layer_idx
        self.tp_size = get_tensor_model_parallel_world_size()
        self.moe_num_shared_experts = getattr(config, "moe_num_shared_experts", None) 
        
        if self.tp_size > config.moe_num_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.moe_num_experts}.")


        self.gate = ReplicatedLinear(config.hidden_size,
                                config.moe_num_experts,
                                bias=False,
                                quant_config=None,
                                prefix=f"{prefix}.gate")

        self.experts = FusedMoE(
                                num_experts=config.moe_num_experts,
                                top_k=config.moe_k, 
                                hidden_size=config.hidden_size,
                                intermediate_size=config.moe_intermediate_size,
                                reduce_results=False,
                                renormalize=True,
                                quant_config=quant_config,
                                prefix=f"{prefix}.experts"
                                )

        if self.moe_num_shared_experts is not None:
            intermediate_size = (config.moe_intermediate_size *
                                 config.moe_num_shared_experts)
            self.shared_experts = Ernie4_5_MoeMLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                prefix=f"{prefix}.shared_experts",
            )




    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_shape = hidden_states.shape
        hidden_dim = hidden_states.shape[-1]
        hidden_states = hidden_states.view(-1, hidden_dim)
        if self.moe_num_shared_experts is not None:
            shared_output = self.shared_experts(hidden_states)

        router_logits, _ = self.gate(hidden_states)

        final_hidden_states = self.experts(hidden_states=hidden_states,
                                           router_logits=router_logits)

        if self.moe_num_shared_experts is not None and shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
            
        
        if self.tp_size > 1:
            final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(  
                final_hidden_states)

        return final_hidden_states.view(orig_shape)


class Ernie4_5_MoeAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        head_dim: Optional[int] = None, 
        rope_theta: float = 500000, 
        rope_scaling: Optional[dict[str, Any]] = None, 
        max_position_embeddings: int = 131072,
        rms_norm_eps: float = 1e-05,
        qkv_bias: bool = False,

        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        layer_idx = extract_layer_index(prefix) if len(prefix) > 0 else 0
        self.layer_idx = layer_idx
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0 
        self.num_heads = self.total_num_heads // tp_size 

        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim or (hidden_size // self.total_num_heads)

        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5 
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings


        self.qkv_proj = QKVParallelLinear(hidden_size,
                                          self.head_dim,
                                          self.total_num_heads,
                                          self.total_num_kv_heads,
                                          bias=qkv_bias,
                                          quant_config=quant_config,
                                          prefix=f"{prefix}.qkv_proj")

        self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                        hidden_size,
                                        bias=False,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.o_proj")

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            is_neox_style=False,
            rope_scaling=rope_scaling,
        )
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.scaling,
                              num_kv_heads=self.num_kv_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")


    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:

        qkv, _ = self.qkv_proj(hidden_states)

        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)

        # Attention
        attn_output = self.attn(q, k, v)
        # Output projection
        output, _ = self.o_proj(attn_output)
        return output

class Ernie4_5_MoeDecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 500000)
        rope_scaling = getattr(config, "rope_scaling", None) 
        max_position_embeddings = getattr(config, "max_position_embeddings", 131072)
        self.self_attn = Ernie4_5_MoeAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            head_dim=getattr(config, 'head_dim', None),
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            rms_norm_eps=config.rms_norm_eps,
            qkv_bias=getattr(config, 'use_bias', False),
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )

        layer_idx = extract_layer_index(prefix)
        self.layer_idx = layer_idx

        # MoE
        moe_num_experts = getattr(config, "moe_num_experts", 0)
        moe_layer_start_index = getattr(config, "moe_layer_start_index", 0)
        moe_layer_end_index = getattr(config, "moe_layer_end_index", config.num_hidden_layers - 1)
        moe_layer_interval = getattr(config, "moe_layer_interval", 1)
        use_moe = getattr(config, "use_moe", moe_num_experts > 0)


        if (use_moe and ((layer_idx + 1) % moe_layer_interval == 0)
            and layer_idx >= moe_layer_start_index
            and layer_idx <= moe_layer_end_index):
            self.mlp = Ernie4_5_MoeMoE(
                config=config,
                quant_config=quant_config,
                prefix=f"{prefix}.mlp"
            )
        else:
            self.mlp = Ernie4_5_MoeMLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                use_bias=getattr(config, 'use_bias', False),
                quant_config=quant_config,
                prefix=f"{prefix}.mlp"
            )

        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:

        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )

        # Fully Connected 
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)

        hidden_states = self.mlp(hidden_states)
        
        return hidden_states, residual


@support_torch_compile
class Ernie4_5_MoeModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.config = config

        if get_pp_group().is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                prefix=f"{prefix}.embed_tokens")
        else:
            self.embed_tokens = PPMissingLayer()

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Ernie4_5_MoeDecoderLayer(config=config,
                                                cache_config=cache_config,
                                                quant_config=quant_config,
                                                prefix=prefix),
            prefix=f"{prefix}.layers",
        )

        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()

        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:

        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })

        hidden_states, _ = self.norm(hidden_states, residual)

        return hidden_states

class Ernie4_5_MoeForCausalLM(nn.Module, SupportsPP):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    fall_back_to_pt_during_load = False

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.quant_config = quant_config
        self.model = Ernie4_5_MoeModel(vllm_config=vllm_config,
                                   prefix=maybe_prefix(prefix, "model")) 
        
        if get_pp_group().is_last_rank:
            self.lm_head = ParallelLMHead(config.vocab_size,
                                          config.hidden_size,
                                          quant_config=quant_config)
        else:
            self.lm_head = PPMissingLayer()

        if self.config.tie_word_embeddings:
            self.lm_head.weight = self.model.embed_tokens.weight
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)  
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata) 
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.moe_num_experts)

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if self.config.tie_word_embeddings and name.endswith("lm_head.weight") :
                continue
            # MTP will be supported soon
            if "mtp" in name:
                continue

            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue

                if (("mlp.experts." in name) and name not in params_dict):
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if ((name.endswith(".bias") or name.endswith("_bias"))
                        and name not in params_dict):
                    continue
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    
                    if weight_name not in name:
                        continue

                    name = name.replace(weight_name, param_name)
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue

                    # Skip loading extra bias for GPTQ models.
                    if ((name.endswith(".bias") or name.endswith("_bias"))
                            and name not in params_dict):
                        continue
                    param = params_dict[name]

                    weight_loader = param.weight_loader
                    weight_loader(param,
                                  loaded_weight,
                                  name,
                                  shard_id=shard_id,
                                  expert_id=expert_id)
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if ((name.endswith(".bias") or name.endswith("_bias"))
                            and name not in params_dict):
                        continue
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params