inference.py 5.9 KB
Newer Older
zzg_666's avatar
zzg_666 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2025 BAAI. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import argparse
import importlib as imp
import os
import os.path as osp
from pathlib import Path
import random
from time import sleep
from PIL import Image
import torch
from tqdm import tqdm

from src.utils.model_utils import build_emu3p5
from src.utils.generation_utils import generate, multimodal_decode
from src.utils.painting_utils import ProtoWriter
from src.utils.input_utils import build_image, smart_resize

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--cfg", default="", type=str)
    parser.add_argument("--num_workers", default=1, type=int)
    parser.add_argument("--worker_id", default=0, type=int)
    args = parser.parse_args()
    return args

def inference(
    cfg,
    model,
    tokenizer,
    vq_model,
):
    save_path = cfg.save_path

    os.makedirs(save_path, exist_ok=True)
    os.makedirs(f"{save_path}/proto", exist_ok=True)
    proto_writer = ProtoWriter()

    for name, question in tqdm(cfg.prompts, total=len(cfg.prompts)):
        if osp.exists(f"{save_path}/proto/{name}.pb"):
            print(f"[WARNING] Result already exists, skipping {name}", flush=True)
            continue

        torch.cuda.empty_cache()

        reference_image = None
        if not isinstance(question, str):
            if isinstance(question["reference_image"], list):
                print(f"[INFO] {len(question['reference_image'])} reference images are provided")
                reference_image = []
                for img in question["reference_image"]:
                    reference_image.append(Image.open(img).convert("RGB"))
            else:
                print (f"[INFO] 1 reference image is provided")
                reference_image = Image.open(question["reference_image"]).convert("RGB")
            question = question["prompt"]
        else:
            print(f"[INFO] No reference image is provided")
        
        proto_writer.clear()
        proto_writer.extend([["question", question]])
        if reference_image is not None:
            if isinstance(reference_image, list):
                for idx, img in enumerate(reference_image):
                    proto_writer.extend([[f"reference_image", img]])
            else:
                proto_writer.extend([["reference_image", reference_image]])

        success = True
        prompt = cfg.template.format(question=question)

        print(f"[INFO] Handling prompt: {prompt}")
        if reference_image is not None:
            if isinstance(reference_image, list):
                image_str = ""
                for img in reference_image:
                    image_str += build_image(img, cfg, tokenizer, vq_model)
            else:
                image_str = build_image(reference_image, cfg, tokenizer, vq_model)
            prompt = prompt.replace("<|IMAGE|>", image_str)
            unc_prompt = cfg.unc_prompt.replace("<|IMAGE|>", image_str)
        else:
            unc_prompt = cfg.unc_prompt

        input_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).to(model.device)

        if input_ids[0, 0] != cfg.special_token_ids["BOS"]:
            BOS = torch.Tensor([[cfg.special_token_ids["BOS"]]], device=input_ids.device, dtype=input_ids.dtype)
            input_ids = torch.cat([BOS, input_ids], dim=1)

        unconditional_ids = tokenizer.encode(unc_prompt, return_tensors="pt", add_special_tokens=False).to(model.device)

        if hasattr(cfg, "img_unc_prompt"):
            full_unc_ids = tokenizer.encode(cfg.img_unc_prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
        else:
            full_unc_ids = None

        force_same_image_size = True
        # for x2i task, if multiple reference images are provided as a list, force_same_image_size should be False
        if isinstance(reference_image, list) and len(reference_image) > 1:
            force_same_image_size = False   
        
        for result_tokens in generate(cfg, model, tokenizer, input_ids, unconditional_ids, full_unc_ids, force_same_image_size):
            try:
                result = tokenizer.decode(result_tokens, skip_special_tokens=False)
                mm_out = multimodal_decode(result, tokenizer, vq_model)
                proto_writer.extend(mm_out)
            except Exception as e:
                success = False
                print(f"[ERROR] Failed to generate token sequence: {e}")
                break

        if not success:
            continue

        proto_writer.save(f"{save_path}/proto/{name}.pb")

def main():
    args = parse_args()
    cfg_name = Path(args.cfg).stem
    cfg_package = Path(args.cfg).parent.__str__().replace("/", ".")
    cfg = imp.import_module(f".{cfg_name}", package=cfg_package)

    rank, world_size = args.worker_id, args.num_workers

    cfg.rank = rank
    cfg.world_size = world_size

    if isinstance(cfg.prompts, dict):
        cfg.prompts = [(n, p) for n, p in cfg.prompts.items()]
    else:
        cfg.prompts = [(f"{idx:03d}", p) for idx, p in enumerate(cfg.prompts)]

    cfg.prompts = [(n, p) for n, p in cfg.prompts if not osp.exists(f"{cfg.save_path}/proto/{n}.pb")]
    cfg.prompts = cfg.prompts[rank::world_size]
    cfg.num_prompts = len(cfg.prompts)

    hf_device, vq_device = cfg.hf_device, cfg.vq_device

    model, tokenizer, vq_model = build_emu3p5(
        cfg.model_path,
        cfg.tokenizer_path,
        cfg.vq_path,
        vq_type=cfg.vq_type,
        model_device=hf_device,
        vq_device=vq_device,
        **getattr(cfg, "diffusion_decoder_kwargs", {}),
    )
    print(f"[INFO] Model loaded successfully")
    cfg.special_token_ids = {}
    for k, v in cfg.special_tokens.items():
        cfg.special_token_ids[k] = tokenizer.encode(v)[0]

    random.seed(cfg.seed + rank)

    inference(
        cfg=cfg,
        model=model,
        tokenizer=tokenizer,
        vq_model=vq_model,
    )
    print(f"[INFO] Inference finished")

if __name__ == "__main__":
    main()