inference_box_prompt.py 4.05 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.transforms import ToTensor
from PIL import Image
import io
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(DEVICE)
def run_ours_box_or_points(img_path, pts_sampled, pts_labels, model):
    model = model.to(DEVICE)
    image_np = np.array(Image.open(img_path))
    img_tensor = ToTensor()(image_np)
    img_tensor = img_tensor.to(DEVICE)
    pts_sampled = torch.reshape(torch.tensor(pts_sampled), [1, 1, -1, 2])
    pts_labels = torch.reshape(torch.tensor(pts_labels), [1, 1, -1])
    pts_sampled = pts_sampled.to(DEVICE)
    pts_labels = pts_labels.to(DEVICE)
    predicted_logits, predicted_iou = model(
        img_tensor[None, ...],
        pts_sampled,
        pts_labels,
    )
    sorted_ids = torch.argsort(predicted_iou, dim=-1, descending=True)
    predicted_iou = torch.take_along_dim(predicted_iou, sorted_ids, dim=2)
    predicted_logits = torch.take_along_dim(
        predicted_logits, sorted_ids[..., None, None], dim=2
    )

    return torch.ge(predicted_logits[0, 0, 0, :, :], 0).cpu().detach().numpy()

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30 / 255, 144 / 255, 255 / 255, 0.8])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    ax.scatter(
        pos_points[:, 0],
        pos_points[:, 1],
        color="green",
        marker="*",
        s=marker_size,
        edgecolor="white",
        linewidth=1.25,
    )
    ax.scatter(
        neg_points[:, 0],
        neg_points[:, 1],
        color="red",
        marker="*",
        s=marker_size,
        edgecolor="white",
        linewidth=1.25,
    )


def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(
        plt.Rectangle((x0, y0), w, h, edgecolor="yellow", facecolor=(0, 0, 0, 0), lw=5)
    )

def show_anns_ours(mask, ax):
    ax.set_autoscale_on(False)
    img = np.ones((mask.shape[0], mask.shape[1], 4))
    img[:, :, 3] = 0
    color_mask = [0, 1, 0, 0.7]
    img[np.logical_not(mask)] = color_mask
    ax.imshow(img)
from efficient_sam.build_efficient_sam import build_efficient_sam_vitt, build_efficient_sam_vits
# from squeeze_sam.build_squeeze_sam import build_squeeze_sam
import zipfile

efficient_sam_vitt_model = build_efficient_sam_vitt()
efficient_sam_vitt_model.eval()

# Since EfficientSAM-S checkpoint file is >100MB, we store the zip file.
with zipfile.ZipFile("weights/efficient_sam_vits.pt.zip", 'r') as zip_ref:
    zip_ref.extractall("weights")
efficient_sam_vits_model = build_efficient_sam_vits()
efficient_sam_vits_model.eval()

# squeeze_sam_model = build_squeeze_sam()
# squeeze_sam_model.eval()
x1=400
y1=200
x2=800
y2=600
w=x2-x1
h=y2-y1

fig, ax = plt.subplots(1, 3, figsize=(30, 30))
input_point = np.array([[x1, y1], [x2, y2]])
input_label = np.array([2,3])
image_path = "figs/examples/dogs.jpg"
image = np.array(Image.open(image_path))
show_points(input_point, input_label, ax[0])
show_box([x1,y1,x2,y2], ax[0])
ax[0].imshow(image)


ax[1].imshow(image)
mask_efficient_sam_vitt = run_ours_box_or_points(image_path, input_point, input_label, efficient_sam_vitt_model)
show_anns_ours(mask_efficient_sam_vitt, ax[1])
ax[1].title.set_text("EfficientSAM (VIT-tiny)")
ax[1].axis('off')

ax[2].imshow(image)
mask_efficient_sam_vits = run_ours_box_or_points(image_path, input_point, input_label, efficient_sam_vits_model)
show_anns_ours(mask_efficient_sam_vits, ax[2])
ax[2].title.set_text("EfficientSAM (VIT-small)")
ax[2].axis('off')


# ax[3].imshow(image)
# mask_squeeze_sam = run_ours_box_or_points(image_path, input_point, input_label, squeeze_sam_model)
# show_anns_ours(mask_squeeze_sam, ax[3])
# ax[3].title.set_text("SqueezeSAM")
# ax[3].axis('off')

plt.savefig("results/efficientsam_box.png", bbox_inches='tight')