inference_segment_everything.py 5.18 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.transforms import ToTensor
from PIL import Image
import io
import cv2
GRID_SIZE = 32
dcuai's avatar
dcuai committed
9
torch.backends.cudnn.enabled = False
luopl's avatar
luopl committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from segment_anything.utils.amg import (
    batched_mask_to_box,
    calculate_stability_score,
    mask_to_rle_pytorch,
    remove_small_regions,
    rle_to_mask,
)
from torchvision.ops.boxes import batched_nms, box_area
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def process_small_region(rles):
        new_masks = []
        scores = []
        min_area = 100
        nms_thresh = 0.7
        for rle in rles:
            mask = rle_to_mask(rle[0])

            mask, changed = remove_small_regions(mask, min_area, mode="holes")
            unchanged = not changed
            mask, changed = remove_small_regions(mask, min_area, mode="islands")
            unchanged = unchanged and not changed

            new_masks.append(torch.as_tensor(mask).unsqueeze(0))
            # Give score=0 to changed masks and score=1 to unchanged masks
            # so NMS will prefer ones that didn't need postprocessing
            scores.append(float(unchanged))

        # Recalculate boxes and remove any new duplicates
        masks = torch.cat(new_masks, dim=0)
        boxes = batched_mask_to_box(masks)
        keep_by_nms = batched_nms(
            boxes.float(),
            torch.as_tensor(scores),
            torch.zeros_like(boxes[:, 0]),  # categories
            iou_threshold=nms_thresh,
        )

        # Only recalculate RLEs for masks that have changed
        for i_mask in keep_by_nms:
            if scores[i_mask] == 0.0:
                mask_torch = masks[i_mask].unsqueeze(0)
                rles[i_mask] = mask_to_rle_pytorch(mask_torch)
        masks = [rle_to_mask(rles[i][0]) for i in keep_by_nms]
        return masks
def get_predictions_given_embeddings_and_queries(img, points, point_labels, model):
    predicted_masks, predicted_iou = model(
        img[None, ...], points, point_labels
    )
    sorted_ids = torch.argsort(predicted_iou, dim=-1, descending=True)
    predicted_iou_scores = torch.take_along_dim(predicted_iou, sorted_ids, dim=2)
    predicted_masks = torch.take_along_dim(
        predicted_masks, sorted_ids[..., None, None], dim=2
    )
    predicted_masks = predicted_masks[0]
    iou = predicted_iou_scores[0, :, 0]
    index_iou = iou > 0.7
    iou_ = iou[index_iou]
    masks = predicted_masks[index_iou]
    score = calculate_stability_score(masks, 0.0, 1.0)
    score = score[:, 0]
    index = score > 0.9
    score_ = score[index]
    masks = masks[index]
    iou_ = iou_[index]
    masks = torch.ge(masks, 0.0)
    return masks, iou_

def run_everything_ours(img_path, model):
    model = model.to(DEVICE)
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    img_tensor = ToTensor()(image)
    _, original_image_h, original_image_w = img_tensor.shape
    xy = []
    for i in range(GRID_SIZE):
        curr_x = 0.5 + i / GRID_SIZE * original_image_w
        for j in range(GRID_SIZE):
            curr_y = 0.5 + j / GRID_SIZE * original_image_h
            xy.append([curr_x, curr_y])
    xy = torch.from_numpy(np.array(xy))
    points = xy
    num_pts = xy.shape[0]
    point_labels = torch.ones(num_pts, 1)
    with torch.no_grad():
      predicted_masks, predicted_iou = get_predictions_given_embeddings_and_queries(
              img_tensor.to(DEVICE),
              points.reshape(1, num_pts, 1, 2).to(DEVICE),
              point_labels.reshape(1, num_pts, 1).to(DEVICE),
              model.to(DEVICE),
          )
    rle = [mask_to_rle_pytorch(m[0:1]) for m in predicted_masks]
    predicted_masks = process_small_region(rle)
    return predicted_masks
def show_anns_ours(mask, ax):
    ax.set_autoscale_on(False)
    img = np.ones((mask[0].shape[0], mask[0].shape[1], 4))
    img[:,:,3] = 0
    for ann in mask:
        m = ann
        color_mask = np.concatenate([np.random.random(3), [0.5]])
        img[m] = color_mask
    ax.imshow(img)
from efficient_sam.build_efficient_sam import build_efficient_sam_vitt, build_efficient_sam_vits
# from squeeze_sam.build_squeeze_sam import build_squeeze_sam
import zipfile

efficient_sam_vitt_model = build_efficient_sam_vitt()
efficient_sam_vitt_model.eval()

# Since EfficientSAM-S checkpoint file is >100MB, we store the zip file.
with zipfile.ZipFile("weights/efficient_sam_vits.pt.zip", 'r') as zip_ref:
    zip_ref.extractall("weights")
efficient_sam_vits_model = build_efficient_sam_vits()
efficient_sam_vits_model.eval()
fig, ax = plt.subplots(1, 3, figsize=(30, 30))
image_path = "figs/examples/dogs.jpg"
image = np.array(Image.open(image_path))
ax[0].imshow(image)
ax[0].title.set_text("Original")
ax[0].axis('off')

ax[1].imshow(image)
mask_efficient_sam_vitt = run_everything_ours(image_path, efficient_sam_vitt_model)
show_anns_ours(mask_efficient_sam_vitt, ax[1])
ax[1].title.set_text("EfficientSAM (VIT-tiny)")
ax[1].axis('off')

ax[2].imshow(image)
mask_efficient_sam_vits = run_everything_ours(image_path, efficient_sam_vits_model)
show_anns_ours(mask_efficient_sam_vits, ax[2])
ax[2].title.set_text("EfficientSAM (VIT-small)")
ax[2].axis('off')

dcuai's avatar
dcuai committed
143
plt.savefig("results/segmenteverything.png", bbox_inches='tight')