Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
EfficientNet_B2_mmcv
Commits
65b7037c
Commit
65b7037c
authored
Dec 07, 2023
by
sunxx1
Browse files
更新readme
parent
71b6b09e
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
54 additions
and
6 deletions
+54
-6
README.md
README.md
+34
-6
docker/Dockerfile
docker/Dockerfile
+5
-0
docker/requirements.txt
docker/requirements.txt
+15
-0
No files found.
README.md
View file @
65b7037c
...
@@ -6,13 +6,13 @@ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
...
@@ -6,13 +6,13 @@ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
-
https://arxiv.org/abs/1905.11946
-
https://arxiv.org/abs/1905.11946
## 模型
介绍
## 模型
结构
EfficientNet B2是一种卷积神经网络模型,由Google Brain团队于2019年提出。它是EfficientNet系列的一部分,是在ImageNet数据集上进行训练的,具有高度优化的网络结构,可以有效地识别和分类图像。
EfficientNet B2是一种卷积神经网络模型,由Google Brain团队于2019年提出。它是EfficientNet系列的一部分,是在ImageNet数据集上进行训练的,具有高度优化的网络结构,可以有效地识别和分类图像。


##
模型结构
##
算法原理
EfficientNet B2模型的网络结构可以分为三个部分:特征提取器、特征增强层和分类器。
EfficientNet B2模型的网络结构可以分为三个部分:特征提取器、特征增强层和分类器。
...
@@ -20,15 +20,43 @@ EfficientNet B2模型的网络结构可以分为三个部分:特征提取器
...
@@ -20,15 +20,43 @@ EfficientNet B2模型的网络结构可以分为三个部分:特征提取器
## 环境配置
## 环境配置
### Docker
### Docker
(方法一)
```
python
```
python
git
clone
--
recursive
http
:
//
developer
.
hpccube
.
com
/
codes
/
modelzoo
/
efficientnet_b2_mmcv
.
git
git
clone
--
recursive
http
:
//
developer
.
hpccube
.
com
/
codes
/
modelzoo
/
efficientnet_b2_mmcv
.
git
docker
pull
image
.
sourcefind
.
cn
:
5000
/
dcu
/
admin
/
base
/
pytorch
:
1.10
.
0
-
centos7
.
6
-
dtk
-
22.10
.
1
-
py37
-
latest
docker
pull
image
.
sourcefind
.
cn
:
5000
/
dcu
/
admin
/
base
/
pytorch
:
1.10
.
0
-
centos7
.
6
-
dtk
-
22.10
.
1
-
py37
-
latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker
run
--
shm
-
size
10
g
--
network
=
host
--
name
=
nit
-
pytorch
--
privileged
--
device
=/
dev
/
kfd
--
device
=/
dev
/
dri
--
group
-
add
video
--
cap
-
add
=
SYS_PTRACE
--
security
-
opt
seccomp
=
unconfined
-
v
$
PWD
/
Efficientnet_b2_mmcv
:
/
home
/
Efficientnet_b2_mmcv
-
it
<
your
IMAGE
ID
>
bash
docker
run
--
shm
-
size
10
g
--
network
=
host
--
name
=
nit
-
pytorch
--
privileged
--
device
=/
dev
/
kfd
--
device
=/
dev
/
dri
--
group
-
add
video
--
cap
-
add
=
SYS_PTRACE
--
security
-
opt
seccomp
=
unconfined
-
v
$
PWD
/
efficientnet_b2_mmcv
:
/
home
/
efficientnet_b2_mmcv
-
it
<
your
IMAGE
ID
>
bash
cd
efficientnet_b2_mmcv
/
mmclassification
-
mmcv
pip
install
-
r
requirements
.
txt
```
### Dockerfile(方法二)
```
plaintext
cd efficientnet_b2_mmcv/docker
docker build --no-cache -t efficientnet_b2_mmcv:latest .
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../efficientnet_b2_mmcv:/home/efficientnet_b2_mmcv -it megatron bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```
### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/
```
plaintext
DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
mmcv:1.6.1
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```
2、其它非特殊库参照requirements.txt安装
cd
Densenet121
-
mmcv
/
mmclassification
-
mmcv
```
plaintext
pip install -r requirements.txt
pip install -r requirements.txt
```
```
...
@@ -46,7 +74,7 @@ pip install -r requirements.txt
...
@@ -46,7 +74,7 @@ pip install -r requirements.txt
├── val
├── val
```
```
##
#
训练
## 训练
将训练数据解压到data目录下。
将训练数据解压到data目录下。
...
...
docker/Dockerfile
0 → 100644
View file @
65b7037c
FROM
image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
ENV
DEBIAN_FRONTEND=noninteractive
# 安装pip相关依赖
COPY
requirements.txt requirements.txt
RUN
pip3
install
-i
http://mirrors.aliyun.com/pypi/simple/
--trusted-host
mirrors.aliyun.com
-r
requirements.txt
docker/requirements.txt
0 → 100644
View file @
65b7037c
albumentations>=0.3.2 --no-binary qudida,albumentations
colorama
requests
rich
scipy
matplotlib>=3.1.0
numpy
packaging
codecov
flake8
interrogate
isort==4.3.21
pytest
xdoctest >= 0.10.0
yapf
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment