datasets.py 3.21 KB
Newer Older
burchim's avatar
burchim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2021, Maxime Burchi.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# PyTorch
import torch
import torchaudio

# Sentencepiece
import sentencepiece as spm

# Other
import glob
from tqdm import tqdm

# Librispeech 292.367 samples
class LibriSpeechDataset(torch.utils.data.Dataset): 
    def __init__(self, dataset_path, training_params, tokenizer_params, split, args):

        self.names = glob.glob(dataset_path + split + "*/*/*/*.flac")
        self.vocab_type = tokenizer_params["vocab_type"]
        self.vocab_size = str(tokenizer_params["vocab_size"])
        self.lm_mode = training_params.get("lm_mode", False)

        if split.split("-")[0] == "train":
            self.names = self.filter_lengths(training_params["train_audio_max_length"], training_params["train_label_max_length"], args.rank)
        else:
            self.names = self.filter_lengths(training_params["eval_audio_max_length"], training_params["eval_audio_max_length"], args.rank)

    def __getitem__(self, i):

        if self.lm_mode:
            return [torch.load(self.names[i].split(".flac")[0].split("_")[0] + "." + self.vocab_type + "_" + self.vocab_size)]
        else:
            return [torchaudio.load(self.names[i])[0], torch.load(self.names[i].split(".flac")[0].split("_")[0] + "." + self.vocab_type + "_" + self.vocab_size)]

    def __len__(self):

        return len(self.names)

    def filter_lengths(self, audio_max_length, label_max_length, rank=0):

        if audio_max_length is None or label_max_length is None:
            return self.names

        if rank == 0:
            print("LibriSpeech dataset filtering")
            print("Audio maximum length : {} / Label sequence maximum length : {}".format(audio_max_length, label_max_length))
            self.names = tqdm(self.names)

        return [name for name in self.names if torch.load(name + "_len") <= audio_max_length and torch.load(name.replace("flac", self.vocab_type + "_" + self.vocab_size + "_len")) <= label_max_length]
            
# Librispeech Corpus 40.418.261 samples
class LibriSpeechCorpusDataset(torch.utils.data.Dataset): 
    def __init__(self, dataset_path, training_params, tokenizer_params, split, args):

        # Dataset Params
        self.tokenizer = spm.SentencePieceProcessor(tokenizer_params["tokenizer_path"])
        self.corpus = open(dataset_path, 'r').readlines()
        self.max_len = training_params["train_label_max_length"]

    def __getitem__(self, i):

        if self.max_len:
            while len(self.tokenizer.encode(self.corpus[i][:-1].lower())) > self.max_len:
                i = torch.randint(0, self.__len__(), [])

        return [torch.LongTensor(self.tokenizer.encode(self.corpus[i][:-1].lower()))]

    def __len__(self):

        return len(self.corpus)