model_ctc.py 6.76 KB
Newer Older
burchim's avatar
burchim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright 2021, Maxime Burchi.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# PyTorch
import torch
import torch.nn as nn

# Base Model
from models.model import Model

# Encoders
from models.encoders import (
    ConformerEncoder,
    ConformerEncoderInterCTC
)

# Losses
from models.losses import (
    LossCTC, 
    LossInterCTC
)

# CTC Decode Beam Search
from ctcdecode import CTCBeamDecoder

class ModelCTC(Model):

    def __init__(self, encoder_params, tokenizer_params, training_params, decoding_params, name):
        super(ModelCTC, self).__init__(tokenizer_params, training_params, decoding_params, name)

        # Encoder
        if encoder_params["arch"] == "Conformer":
            self.encoder = ConformerEncoder(encoder_params)
        else:
            raise Exception("Unknown encoder architecture:", encoder_params["arch"])

        # FC Layer
        self.fc = nn.Linear(encoder_params["dim_model"][-1] if isinstance(encoder_params["dim_model"], list) else encoder_params["dim_model"], tokenizer_params["vocab_size"])

        # Criterion
        self.criterion = LossCTC()

        # Compile
        self.compile(training_params)

    def forward(self, batch):

        # Unpack Batch
        x, _, x_len, _ = batch

        # Forward Encoder (B, Taud) -> (B, T, Denc)
        logits, logits_len, attentions = self.encoder(x, x_len)

        # FC Layer (B, T, Denc) -> (B, T, V)
        logits = self.fc(logits)

        return logits, logits_len, attentions

    def distribute_strategy(self, rank):
        super(ModelCTC, self).distribute_strategy(rank)

        self.encoder = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.encoder)
        self.encoder = torch.nn.parallel.DistributedDataParallel(self.encoder, device_ids=[self.rank])
        self.fc = torch.nn.parallel.DistributedDataParallel(self.fc, device_ids=[self.rank])

    def load_encoder(self, path):

        # Load Encoder Params
        checkpoint = torch.load(path, map_location=next(self.parameters()).device)
        if checkpoint["is_distributed"] and not self.is_distributed:
            self.encoder.load_state_dict({key.replace(".module.", ".").replace("encoder.", ""):value for key, value in checkpoint["model_state_dict"].items() if key[:len("encoder")] == "encoder"})
        else:
            self.encoder.load_state_dict({key.replace("encoder.", ""):value for key, value in checkpoint["model_state_dict"].items() if key[:len("encoder")] == "encoder"})

        # Print Encoder state
        if self.rank == 0:
            print("Model encoder loaded at step {} from {}".format(checkpoint["model_step"], path))

    def gready_search_decoding(self, x, x_len):

        # Forward Encoder (B, Taud) -> (B, T, Denc)
        logits, logits_len = self.encoder(x, x_len)[:2]

        # FC Layer (B, T, Denc) -> (B, T, V)
        logits = self.fc(logits)

        # Softmax -> Log > Argmax -> (B, T)
        preds = logits.log_softmax(dim=-1).argmax(dim=-1)

        # Batch Pred List
        batch_pred_list = []

        # Batch loop
        for b in range(logits.size(0)):

            # Blank
            blank = False

            # Pred List
            pred_list = []

            # Decoding Loop
            for t in range(logits_len[b]):

                # Blank Prediction
                if preds[b, t] == 0:
                    blank = True
                    continue

                # First Prediction
                if len(pred_list) == 0:
                    pred_list.append(preds[b, t].item())

                # New Prediction
                elif pred_list[-1] != preds[b, t] or blank:
                    pred_list.append(preds[b, t].item())
                
                # Update Blank
                blank = False

            # Append Sequence
            batch_pred_list.append(pred_list)

        # Decode Sequences
        return self.tokenizer.decode(batch_pred_list)

    def beam_search_decoding(self, x, x_len, beam_size=None):

        # Overwrite beam size
        if beam_size is None:
            beam_size = self.beam_size

        # Beam Search Decoder
        decoder = CTCBeamDecoder(
            [chr(idx + self.ngram_offset) for idx in range(self.tokenizer.vocab_size())],
            model_path=self.ngram_path,
            alpha=self.ngram_alpha,
            beta=self.ngram_beta,
            cutoff_top_n=self.tokenizer.vocab_size(),
            cutoff_prob=1.0,
            beam_width=beam_size,
            num_processes=8,
            blank_id=0,
            log_probs_input=True
        )

        # Forward Encoder (B, Taud) -> (B, T, Denc)
        logits, logits_len = self.encoder(x, x_len)[:2]

        # FC Layer (B, T, Denc) -> (B, T, V)
        logits = self.fc(logits)

        # Apply Temperature
        logits = logits / self.tmp

        # Softmax -> Log
        logP = logits.softmax(dim=-1).log()

        # Beam Search Decoding
        beam_results, beam_scores, timesteps, out_lens = decoder.decode(logP, logits_len)

        # Batch Pred List
        batch_pred_list = []

        # Batch loop
        for b in range(logits.size(0)):
            batch_pred_list.append(beam_results[b][0][:out_lens[b][0]].tolist())

        # Decode Sequences
        return self.tokenizer.decode(batch_pred_list)

class InterCTC(ModelCTC):

    def __init__(self, encoder_params, tokenizer_params, training_params, decoding_params, name):
        super(ModelCTC, self).__init__(tokenizer_params, training_params, name)

        # Update Encoder Params
        encoder_params["vocab_size"] = tokenizer_params["vocab_size"]

        # Encoder
        if encoder_params["arch"] == "Conformer":
            self.encoder = ConformerEncoderInterCTC(encoder_params)

        # FC Layer
        self.fc = nn.Linear(encoder_params["dim_model"][-1] if isinstance(encoder_params["dim_model"], list) else encoder_params["dim_model"], tokenizer_params["vocab_size"])

        # Criterion
        self.criterion = LossInterCTC(training_params["interctc_lambda"])

        # Compile
        self.compile(training_params)

    def forward(self, batch):

        # Unpack Batch
        x, _, x_len, _ = batch

        # Forward Encoder (B, Taud) -> (B, T, Denc)
        logits, logits_len, attentions, interctc_logits = self.encoder(x, x_len)

        # FC Layer (B, T, Denc) -> (B, T, V)
        logits = self.fc(logits)

        return logits, logits_len, attentions, interctc_logits