functions.py 7.98 KB
Newer Older
burchim's avatar
burchim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright 2021, Maxime Burchi.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# PyTorch
import torch

# Models
from models.transducer import Transducer
from models.model_ctc import ModelCTC, InterCTC
from models.lm import LanguageModel

# Datasets
from utils.datasets import (
    LibriSpeechDataset,
    LibriSpeechCorpusDataset
)

# Preprocessing
from utils.preprocessing import (
    collate_fn_pad
)

def create_model(config):

    # Create Model
    if config["model_type"] == "Transducer":

        model = Transducer(
            encoder_params=config["encoder_params"],
            decoder_params=config["decoder_params"],
            joint_params=config["joint_params"],
            tokenizer_params=config["tokenizer_params"],
            training_params=config["training_params"],
            decoding_params=config["decoding_params"],
            name=config["model_name"]
        )

    elif config["model_type"] == "CTC":

        model = ModelCTC(
            encoder_params=config["encoder_params"],
            tokenizer_params=config["tokenizer_params"],
            training_params=config["training_params"],
            decoding_params=config["decoding_params"],
            name=config["model_name"]
        )

    elif config["model_type"] == "InterCTC":

        model = InterCTC(
            encoder_params=config["encoder_params"],
            tokenizer_params=config["tokenizer_params"],
            training_params=config["training_params"],
            decoding_params=config["decoding_params"],
            name=config["model_name"]
        )

    elif config["model_type"] == "LM":

        model = LanguageModel(
            lm_params=config["lm_params"],
            tokenizer_params=config["tokenizer_params"],
            training_params=config["training_params"],
            decoding_params=config["decoding_params"],
            name=config["model_name"]
        )

    else:

        raise Exception("Unknown model type")

    return model

def load_datasets(training_params, tokenizer_params, args):

    # Training Datasets
    training_datasets = {

        "LibriSpeech": {
            "class": LibriSpeechDataset,
            "split": {
                "training": "train",
                "training-clean": "train-clean",
                "validation-clean": None,
                "validation-other": None,
                "test-clean": None,
                "test-other": None,
                "eval_time": None,
                "eval_time_encoder": None,
                "eval_time_decoder": None,
            }
        },

        "LibriSpeechCorpus": {
            "class": LibriSpeechCorpusDataset,
            "split": {
                "training": "train",
                "validation-clean": None,
                "validation-other": None,
                "test-clean": None,
                "test-other": None,
                "eval_time": None,
                "eval_time_encoder": None,
                "eval_time_decoder": None,
            }
        }
    }

    # Evaluation Datasets
    evaluation_datasets = {

        "LibriSpeech": {
            "class": LibriSpeechDataset,
            "split": {
                "training": ["dev-clean", "dev-other"],
                "training-clean": ["dev-clean", "dev-other"],
                "validation-clean": "dev-clean",
                "validation-other": "dev-other",
                "test-clean": "test-clean",
                "test-other": "test-other",
                "eval_time": "dev-clean",
                "eval_time_encoder": "dev-clean",
                "eval_time_decoder": "dev-clean",
            }
        },

        "LibriSpeechCorpus": {
            "class": LibriSpeechCorpusDataset,
            "split": {
                "training": "val",
                "validation-clean": "val",
                "validation-other": "val",
                "test-clean": "test",
                "test-other": "test",
                "eval_time": "val",
                "eval_time_encoder": "val",
                "eval_time_decoder": "val",
            }
        }
    }

    # Select Dataset and Split
    training_dataset = training_datasets[training_params["training_dataset"]]["class"]
    training_split = training_datasets[training_params["training_dataset"]]["split"][args.mode]
    evaluation_dataset = evaluation_datasets[training_params["evaluation_dataset"]]["class"]
    evaluation_split = evaluation_datasets[training_params["evaluation_dataset"]]["split"][args.mode]

    # Training Dataset
    if training_split:

        if args.rank == 0:
            print("Loading training dataset : {} {}".format(training_params["training_dataset"], training_split))

        dataset_train =  training_dataset(training_params["training_dataset_path"], training_params, tokenizer_params, training_split, args)

        if args.distributed:
            sampler = torch.utils.data.distributed.DistributedSampler(dataset_train, num_replicas=args.world_size,rank=args.rank)
        else:
            sampler = None

        dataset_train = torch.utils.data.DataLoader(dataset_train, batch_size=training_params["batch_size"], shuffle=(not args.distributed), num_workers=args.num_workers, collate_fn=collate_fn_pad, drop_last=True, sampler=sampler, pin_memory=False)
        
        if args.rank == 0:
            print("Loaded :", dataset_train.dataset.__len__(), "samples", "/", dataset_train.__len__(), "batches")
    else:
        dataset_train = None


    # Evaluation Dataset
    if  evaluation_split:

        # Multiple Evaluation datasets
        if isinstance(evaluation_split, list):

            dataset_eval = {}

            for split in evaluation_split:

                if args.rank == 0:
                    print("Loading evaluation dataset : {} {}".format(training_params["evaluation_dataset"], split))

                dataset = evaluation_dataset(training_params["evaluation_dataset_path"], training_params, tokenizer_params, split, args)

                if args.distributed:
                    sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=args.world_size,rank=args.rank)
                else:
                    sampler = None

                dataset = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size_eval, shuffle=(not args.distributed), num_workers=args.num_workers, collate_fn=collate_fn_pad, sampler=sampler, pin_memory=False)
                
                if args.rank == 0:
                    print("Loaded :", dataset.dataset.__len__(), "samples", "/", dataset.__len__(), "batches")

                dataset_eval[split] = dataset

        # One Evaluation dataset
        else:

            if args.rank == 0:
                print("Loading evaluation dataset : {} {}".format(training_params["evaluation_dataset"], evaluation_split))

            dataset_eval = evaluation_dataset(training_params["evaluation_dataset_path"], training_params, tokenizer_params, evaluation_split, args)

            if args.distributed:
                sampler = torch.utils.data.distributed.DistributedSampler(dataset_eval, num_replicas=args.world_size,rank=args.rank)
            else:
                sampler = None

            dataset_eval = torch.utils.data.DataLoader(dataset_eval, batch_size=args.batch_size_eval, shuffle=(not args.distributed), num_workers=args.num_workers, collate_fn=collate_fn_pad, sampler=sampler, pin_memory=False)
            
            if args.rank == 0:
                print("Loaded :", dataset_eval.dataset.__len__(), "samples", "/", dataset_eval.__len__(), "batches")
    else:
        dataset_eval = None
    
    return dataset_train, dataset_eval