README.md 17.1 KB
Newer Older
Geewook Kim's avatar
Geewook Kim committed
1
2
3
4
5
6
7
8
<div align="center">
    
# Donut 🍩 : Document Understanding Transformer

[![Paper](https://img.shields.io/badge/Paper-arxiv.2111.15664-red)](https://arxiv.org/abs/2111.15664)
[![Conference](https://img.shields.io/badge/ECCV-2022-blue)](#how-to-cite)
[![Demo](https://img.shields.io/badge/Demo-Gradio-brightgreen)](#demo)
[![Demo](https://img.shields.io/badge/Demo-Colab-orange)](#demo)
Geewook Kim's avatar
Geewook Kim committed
9
[![PyPI](https://img.shields.io/pypi/v/donut-python?color=green&label=pip%20install%20donut-python)](https://pypi.org/project/donut-python)
Geewook Kim's avatar
Geewook Kim committed
10
[![Downloads](https://static.pepy.tech/personalized-badge/donut-python?period=total&units=international_system&left_color=grey&right_color=lightgreen&left_text=Downloads)](https://pepy.tech/project/donut-python)
Geewook Kim's avatar
Geewook Kim committed
11

Geewook Kim's avatar
Geewook Kim committed
12
Official Implementation of Donut and SynthDoG | [Paper](https://arxiv.org/abs/2111.15664) | [Slide](https://docs.google.com/presentation/d/1gv3A7t4xpwwNdpxV_yeHzEOMy-exJCAz6AlAI9O5fS8/edit?usp=sharing) | [Poster](https://docs.google.com/presentation/d/1m1f8BbAm5vxPcqynn_MbFfmQAlHQIR5G72-hQUFS2sk/edit?usp=sharing)
Geewook Kim's avatar
Geewook Kim committed
13
14
15
16
17
18

</div>

## Introduction

**Donut** 🍩, **Do**cume**n**t **u**nderstanding **t**ransformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model. Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing). 
Thomas Phung's avatar
Thomas Phung committed
19
In addition, we present **SynthDoG** 🐶, **Synth**etic **Do**cument **G**enerator, that helps the model pre-training to be flexible on various languages and domains.
Geewook Kim's avatar
Geewook Kim committed
20
21
22

Our academic paper, which describes our method in detail and provides full experimental results and analyses, can be found here:<br>
> [**OCR-free Document Understanding Transformer**](https://arxiv.org/abs/2111.15664).<br>
Geewook Kim's avatar
Geewook Kim committed
23
> [Geewook Kim](https://geewook.kim), [Teakgyu Hong](https://dblp.org/pid/183/0952.html), [Moonbin Yim](https://github.com/moonbings), [JeongYeon Nam](https://github.com/long8v), [Jinyoung Park](https://github.com/jyp1111), [Jinyeong Yim](https://jinyeong.github.io), [Wonseok Hwang](https://scholar.google.com/citations?user=M13_WdcAAAAJ), [Sangdoo Yun](https://sangdooyun.github.io), [Dongyoon Han](https://dongyoonhan.github.io), [Seunghyun Park](https://scholar.google.com/citations?user=iowjmTwAAAAJ). In ECCV 2022.
Geewook Kim's avatar
Geewook Kim committed
24

Geewook Kim's avatar
Geewook Kim committed
25
<img width="946" alt="image" src="misc/overview.png">
Geewook Kim's avatar
Geewook Kim committed
26
27
28
29
30

## Pre-trained Models and Web Demos

Gradio web demos are available! [![Demo](https://img.shields.io/badge/Demo-Gradio-brightgreen)](#demo) [![Demo](https://img.shields.io/badge/Demo-Colab-orange)](#demo)
|:--:|
Geewook Kim's avatar
Geewook Kim committed
31
|![image](misc/screenshot_gradio_demos.png)|
Geewook Kim's avatar
Geewook Kim committed
32
33
34
35
36
37
- You can run the demo with `./app.py` file.
- Sample images are available at `./misc` and more receipt images are available at [CORD dataset link](https://huggingface.co/datasets/naver-clova-ix/cord-v2).
- Web demos are available from the links in the following table.

|Task|Sec/Img|Score|Trained Model|<div id="demo">Demo</div>|
|---|---|---|---|---|
Geewook Kim's avatar
Geewook Kim committed
38
39
| [CORD](https://github.com/clovaai/cord) (Document Parsing)   |   0.7 /<br> 0.7 /<br> 1.2   |  91.3 /<br> 91.1 /<br> 90.9    | [donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/official) (1280) /<br> [donut-base-finetuned-cord-v1](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v1/tree/official) (1280) /<br> [donut-base-finetuned-cord-v1-2560](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v1-2560/tree/official) | [gradio space web demo](https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2),<br>[google colab demo](https://colab.research.google.com/drive/1o07hty-3OQTvGnc_7lgQFLvvKQuLjqiw?usp=sharing) |
| [Train Ticket](https://github.com/beacandler/EATEN) (Document Parsing)   |   0.6   |  98.7    | [donut-base-finetuned-zhtrainticket](https://huggingface.co/naver-clova-ix/donut-base-finetuned-zhtrainticket/tree/official) | [google colab demo](https://colab.research.google.com/drive/16O-hMvGiXrYZnlXA_tfJ9_q760YcLoOj?usp=sharing) |
Geewook Kim's avatar
Geewook Kim committed
40
41
| [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip) (Document Classification)     |  0.75   |   95.3      | [donut-base-finetuned-rvlcdip](https://huggingface.co/naver-clova-ix/donut-base-finetuned-rvlcdip/tree/official) | [gradio space web demo](https://huggingface.co/spaces/nielsr/donut-rvlcdip),<br>[google colab demo](https://colab.research.google.com/drive/1xUDmLqlthx8A8rWKLMSLThZ7oeRJkDuU?usp=sharing) |
| [DocVQA Task1](https://rrc.cvc.uab.es/?ch=17) (Document VQA) |  0.78       | 67.5 | [donut-base-finetuned-docvqa](https://huggingface.co/naver-clova-ix/donut-base-finetuned-docvqa/tree/official) | [gradio space web demo](https://huggingface.co/spaces/nielsr/donut-docvqa),<br>[google colab demo](https://colab.research.google.com/drive/1Z4WG8Wunj3HE0CERjt608ALSgSzRC9ig?usp=sharing) |
Geewook Kim's avatar
Geewook Kim committed
42
43

The links to the pre-trained backbones are here:
Geewook Kim's avatar
Geewook Kim committed
44
45
- [`donut-base`](https://huggingface.co/naver-clova-ix/donut-base/tree/official): trained with 64 A100 GPUs (~2.5 days), number of layers (encoder: {2,2,14,2}, decoder: 4), input size 2560x1920, swin window size 10, IIT-CDIP (11M) and SynthDoG (English, Chinese, Japanese, Korean, 0.5M x 4).
- [`donut-proto`](https://huggingface.co/naver-clova-ix/donut-proto/tree/official): (preliminary model) trained with 8 V100 GPUs (~5 days), number of layers (encoder: {2,2,18,2}, decoder: 4), input size 2048x1536, swin window size 8, and SynthDoG (English, Japanese, Korean, 0.4M x 3).
Geewook Kim's avatar
Geewook Kim committed
46
47
48
49
50

Please see [our paper](#how-to-cite) for more details.

## SynthDoG datasets

Geewook Kim's avatar
Geewook Kim committed
51
![image](misc/sample_synthdog.png)
Geewook Kim's avatar
Geewook Kim committed
52
53
54

The links to the SynthDoG-generated datasets are here:

Geewook Kim's avatar
Geewook Kim committed
55
- [`synthdog-en`](https://huggingface.co/datasets/naver-clova-ix/synthdog-en): English, 0.5M.
moonbin-yim's avatar
moonbin-yim committed
56
57
58
- [`synthdog-zh`](https://huggingface.co/datasets/naver-clova-ix/synthdog-zh): Chinese, 0.5M.
- [`synthdog-ja`](https://huggingface.co/datasets/naver-clova-ix/synthdog-ja): Japanese, 0.5M.
- [`synthdog-ko`](https://huggingface.co/datasets/naver-clova-ix/synthdog-ko): Korean, 0.5M.
Geewook Kim's avatar
Geewook Kim committed
59
60
61
62
63

To generate synthetic datasets with our SynthDoG, please see `./synthdog/README.md` and [our paper](#how-to-cite) for details.

## Updates

Geewook Kim's avatar
Geewook Kim committed
64
**_2022-11-14_** New version 1.0.9 is released (`pip install donut-python --upgrade`). See [1.0.9 Release Notes](https://github.com/clovaai/donut/releases/tag/1.0.9).<br>
Geewook Kim's avatar
Geewook Kim committed
65
**_2022-08-12_** Donut 🍩 is also available at [huggingface/transformers 🤗](https://huggingface.co/docs/transformers/main/en/model_doc/donut) (contributed by [@NielsRogge](https://github.com/NielsRogge)). `donut-python` loads the pre-trained weights from the `official` branch of the model repositories. See [1.0.5 Release Notes](https://github.com/clovaai/donut/releases/tag/1.0.5).<br>
Geewook Kim's avatar
Geewook Kim committed
66
**_2022-08-05_** A well-executed hands-on tutorial on donut 🍩 is published at [Towards Data Science](https://towardsdatascience.com/ocr-free-document-understanding-with-donut-1acfbdf099be) (written by [@estaudere](https://github.com/estaudere)).<br>
Geewook Kim's avatar
Geewook Kim committed
67
68
69
70
**_2022-07-20_** First Commit, We release our code, model weights, synthetic data and generator.

## Software installation

Geewook Kim's avatar
Geewook Kim committed
71
[![PyPI](https://img.shields.io/pypi/v/donut-python?color=green&label=pip%20install%20donut-python)](https://pypi.org/project/donut-python)
Geewook Kim's avatar
Geewook Kim committed
72
[![Downloads](https://static.pepy.tech/personalized-badge/donut-python?period=total&units=international_system&left_color=grey&right_color=lightgreen&left_text=Downloads)](https://pepy.tech/project/donut-python)
Geewook Kim's avatar
Geewook Kim committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86

```bash
pip install donut-python
```

or clone this repository and install the dependencies:
```bash
git clone https://github.com/clovaai/donut.git
cd donut/
conda create -n donut_official python=3.7
conda activate donut_official
pip install .
```

Geewook Kim's avatar
Geewook Kim committed
87
88
89
90
91
92
We tested [donut](https://github.com/clovaai/donut) with:
- [torch](https://github.com/pytorch/pytorch) == 1.11.0+cu113 
- [torchvision](https://github.com/pytorch/vision) == 0.12.0+cu113
- [pytorch-lightning](https://github.com/Lightning-AI/lightning) == 1.6.4
- [transformers](https://github.com/huggingface/transformers) == 4.11.3
- [timm](https://github.com/rwightman/pytorch-image-models) == 0.5.4
Geewook Kim's avatar
Geewook Kim committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

## Getting Started

### Data

This repository assumes the following structure of dataset:
```bash
> tree dataset_name
dataset_name
├── test
│   ├── metadata.jsonl
│   ├── {image_path0}
│   ├── {image_path1}
.
.
├── train
│   ├── metadata.jsonl
│   ├── {image_path0}
│   ├── {image_path1}
.
.
└── validation
    ├── metadata.jsonl
    ├── {image_path0}
    ├── {image_path1}
              .
              .

> cat dataset_name/test/metadata.jsonl
Geewook Kim's avatar
Geewook Kim committed
122
123
{"file_name": {image_path0}, "ground_truth": "{\"gt_parse\": {ground_truth_parse}, ... {other_metadata_not_used} ... }"}
{"file_name": {image_path1}, "ground_truth": "{\"gt_parse\": {ground_truth_parse}, ... {other_metadata_not_used} ... }"}
Geewook Kim's avatar
Geewook Kim committed
124
125
126
127
128
     .
     .
```

- The structure of `metadata.jsonl` file is in [JSON Lines text format](https://jsonlines.org), i.e., `.jsonl`. Each line consists of
Geewook Kim's avatar
Geewook Kim committed
129
130
  - `file_name` : relative path to the image file.
  - `ground_truth` : string format (json dumped), the dictionary contains either `gt_parse` or `gt_parses`. Other fields (metadata) can be added to the dictionary but will not be used.
Geewook Kim's avatar
Geewook Kim committed
131
132
133
134
- `donut` interprets all tasks as a JSON prediction problem. As a result, all `donut` model training share a same pipeline. For training and inference, the only thing to do is preparing `gt_parse` or `gt_parses` for the task in format described below.

#### For Document Classification
The `gt_parse` follows the format of `{"class" : {class_name}}`, for example, `{"class" : "scientific_report"}` or `{"class" : "presentation"}`.
Geewook Kim's avatar
Geewook Kim committed
135
136
- Google colab demo is available [here](https://colab.research.google.com/drive/1xUDmLqlthx8A8rWKLMSLThZ7oeRJkDuU?usp=sharing).
- Gradio web demo is available [here](https://huggingface.co/spaces/nielsr/donut-rvlcdip).
Geewook Kim's avatar
Geewook Kim committed
137
138
139
140

#### For Document Information Extraction
The `gt_parse` is a JSON object that contains full information of the document image, for example, the JSON object for a receipt may look like `{"menu" : [{"nm": "ICE BLACKCOFFEE", "cnt": "2", ...}, ...], ...}`.
- More examples are available at [CORD dataset](https://huggingface.co/datasets/naver-clova-ix/cord-v2).
napatswift's avatar
napatswift committed
141
142
- Google colab demo is available [here](https://colab.research.google.com/drive/1o07hty-3OQTvGnc_7lgQFLvvKQuLjqiw?usp=sharing).
- Gradio web demo is available [here](https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2).
Geewook Kim's avatar
Geewook Kim committed
143
144
145
146
147

#### For Document Visual Question Answering
The `gt_parses` follows the format of `[{"question" : {question_sentence}, "answer" : {answer_candidate_1}}, {"question" : {question_sentence}, "answer" : {answer_candidate_2}}, ...]`, for example, `[{"question" : "what is the model name?", "answer" : "donut"}, {"question" : "what is the model name?", "answer" : "document understanding transformer"}]`.
- DocVQA Task1 has multiple answers, hence `gt_parses` should be a list of dictionary that contains a pair of question and answer.
- Google colab demo is available [here](https://colab.research.google.com/drive/1Z4WG8Wunj3HE0CERjt608ALSgSzRC9ig?usp=sharing).
Geewook Kim's avatar
Geewook Kim committed
148
- Gradio web demo is available [here](https://huggingface.co/spaces/nielsr/donut-docvqa).
Geewook Kim's avatar
Geewook Kim committed
149

Thomas Phung's avatar
Thomas Phung committed
150
#### For (Pseudo) Text Reading Task
Geewook Kim's avatar
Geewook Kim committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
The `gt_parse` looks like `{"text_sequence" : "word1 word2 word3 ... "}`
- This task is also a pre-training task of Donut model.
- You can use our **SynthDoG** 🐶 to generate synthetic images for the text reading task with proper `gt_parse`. See `./synthdog/README.md` for details.

### Training

This is the configuration of Donut model training on [CORD](https://github.com/clovaai/cord) dataset used in our experiment. 
We ran this with a single NVIDIA A100 GPU.

```bash
python train.py --config config/train_cord.yaml \
                --pretrained_model_name_or_path "naver-clova-ix/donut-base" \
                --dataset_name_or_paths '["naver-clova-ix/cord-v2"]' \
                --exp_version "test_experiment"    
  .
  .                                                                                                                                                                                                                                         
Prediction: <s_menu><s_nm>Lemon Tea (L)</s_nm><s_cnt>1</s_cnt><s_price>25.000</s_price></s_menu><s_total><s_total_price>25.000</s_total_price><s_cashprice>30.000</s_cashprice><s_changeprice>5.000</s_changeprice></s_total>
Answer: <s_menu><s_nm>Lemon Tea (L)</s_nm><s_cnt>1</s_cnt><s_price>25.000</s_price></s_menu><s_total><s_total_price>25.000</s_total_price><s_cashprice>30.000</s_cashprice><s_changeprice>5.000</s_changeprice></s_total>
Normed ED: 0.0
Prediction: <s_menu><s_nm>Hulk Topper Package</s_nm><s_cnt>1</s_cnt><s_price>100.000</s_price></s_menu><s_total><s_total_price>100.000</s_total_price><s_cashprice>100.000</s_cashprice><s_changeprice>0</s_changeprice></s_total>
Answer: <s_menu><s_nm>Hulk Topper Package</s_nm><s_cnt>1</s_cnt><s_price>100.000</s_price></s_menu><s_total><s_total_price>100.000</s_total_price><s_cashprice>100.000</s_cashprice><s_changeprice>0</s_changeprice></s_total>
Normed ED: 0.0
Prediction: <s_menu><s_nm>Giant Squid</s_nm><s_cnt>x 1</s_cnt><s_price>Rp. 39.000</s_price><s_sub><s_nm>C.Finishing - Cut</s_nm><s_price>Rp. 0</s_price><sep/><s_nm>B.Spicy Level - Extreme Hot Rp. 0</s_price></s_sub><sep/><s_nm>A.Flavour - Salt & Pepper</s_nm><s_price>Rp. 0</s_price></s_sub></s_menu><s_sub_total><s_subtotal_price>Rp. 39.000</s_subtotal_price></s_sub_total><s_total><s_total_price>Rp. 39.000</s_total_price><s_cashprice>Rp. 50.000</s_cashprice><s_changeprice>Rp. 11.000</s_changeprice></s_total>
Answer: <s_menu><s_nm>Giant Squid</s_nm><s_cnt>x1</s_cnt><s_price>Rp. 39.000</s_price><s_sub><s_nm>C.Finishing - Cut</s_nm><s_price>Rp. 0</s_price><sep/><s_nm>B.Spicy Level - Extreme Hot</s_nm><s_price>Rp. 0</s_price><sep/><s_nm>A.Flavour- Salt & Pepper</s_nm><s_price>Rp. 0</s_price></s_sub></s_menu><s_sub_total><s_subtotal_price>Rp. 39.000</s_subtotal_price></s_sub_total><s_total><s_total_price>Rp. 39.000</s_total_price><s_cashprice>Rp. 50.000</s_cashprice><s_changeprice>Rp. 11.000</s_changeprice></s_total>
Normed ED: 0.039603960396039604                                                                                                                                  
Epoch 29: 100%|█████████████| 200/200 [01:49<00:00,  1.82it/s, loss=0.00327, exp_name=train_cord, exp_version=test_experiment]
```

Some important arguments:

- `--config` : config file path for model training.
- `--pretrained_model_name_or_path` : string format, model name in huggingface modelhub or local path.
- `--dataset_name_or_paths` : string format (json dumped), list of dataset names in huggingface datasets or local paths.
- `--result_path` : file path to save model outputs/artifacts.
- `--exp_version` : used for experiment versioning. The output files are saved at `{result_path}/{exp_version}/*`

### Test

With the trained model, test images and ground truth parses, you can get inference results and accuracy scores.

```bash
python test.py --dataset_name_or_path naver-clova-ix/cord-v2 --pretrained_model_name_or_path ./result/train_cord/test_experiment --save_path ./result/output.json
Geewook Kim's avatar
Geewook Kim committed
193
100%|█████████████| 100/100 [00:35<00:00,  2.80it/s]
Geewook Kim's avatar
Geewook Kim committed
194
Total number of samples: 100, Tree Edit Distance (TED) based accuracy score: 0.9129639764131697, F1 accuracy score: 0.8406020841373987
Geewook Kim's avatar
Geewook Kim committed
195
196
197
198
199
200
201
202
203
204
```

Some important arguments:

- `--dataset_name_or_path` : string format, the target dataset name in huggingface datasets or local path.
- `--pretrained_model_name_or_path` : string format, the model name in huggingface modelhub or local path.
- `--save_path`: file path to save predictions and scores.

## How to Cite
If you find this work useful to you, please cite:
Geewook Kim's avatar
Geewook Kim committed
205
206
207
208
209
210
```bibtex
@inproceedings{kim2022donut,
  title     = {OCR-Free Document Understanding Transformer},
  author    = {Kim, Geewook and Hong, Teakgyu and Yim, Moonbin and Nam, JeongYeon and Park, Jinyoung and Yim, Jinyeong and Hwang, Wonseok and Yun, Sangdoo and Han, Dongyoon and Park, Seunghyun},
  booktitle = {European Conference on Computer Vision (ECCV)},
  year      = {2022}
Geewook Kim's avatar
Geewook Kim committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
}
```

## License

```
MIT license

Copyright (c) 2022-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
```