util.py 12.4 KB
Newer Older
Geewook Kim's avatar
Geewook Kim committed
1
2
3
4
5
6
7
8
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import json
import os
import random
9
from collections import defaultdict
Geewook Kim's avatar
Geewook Kim committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from typing import Any, Dict, List, Tuple, Union

import torch
import zss
from datasets import load_dataset
from nltk import edit_distance
from torch.utils.data import Dataset
from transformers.modeling_utils import PreTrainedModel
from zss import Node


def save_json(write_path: Union[str, bytes, os.PathLike], save_obj: Any):
    with open(write_path, "w") as f:
        json.dump(save_obj, f)


def load_json(json_path: Union[str, bytes, os.PathLike]):
    with open(json_path, "r") as f:
        return json.load(f)


class DonutDataset(Dataset):
    """
    DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
    Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
35
    and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string)
Geewook Kim's avatar
Geewook Kim committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    Args:
        dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
        ignore_id: ignore_index for torch.nn.CrossEntropyLoss
        task_start_token: the special token to be fed to the decoder to conduct the target task
    """

    def __init__(
        self,
        dataset_name_or_path: str,
        donut_model: PreTrainedModel,
        max_length: int,
        split: str = "train",
        ignore_id: int = -100,
        task_start_token: str = "<s>",
        prompt_end_token: str = None,
        sort_json_key: bool = True,
    ):
        super().__init__()

        self.donut_model = donut_model
        self.max_length = max_length
        self.split = split
        self.ignore_id = ignore_id
        self.task_start_token = task_start_token
        self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
        self.sort_json_key = sort_json_key

        self.dataset = load_dataset(dataset_name_or_path, split=self.split)
        self.dataset_length = len(self.dataset)

        self.gt_token_sequences = []
        for sample in self.dataset:
            ground_truth = json.loads(sample["ground_truth"])
            if "gt_parses" in ground_truth:  # when multiple ground truths are available, e.g., docvqa
                assert isinstance(ground_truth["gt_parses"], list)
                gt_jsons = ground_truth["gt_parses"]
            else:
                assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
                gt_jsons = [ground_truth["gt_parse"]]

            self.gt_token_sequences.append(
                [
                    task_start_token
                    + self.donut_model.json2token(
                        gt_json,
                        update_special_tokens_for_json_key=self.split == "train",
                        sort_json_key=self.sort_json_key,
                    )
                    + self.donut_model.decoder.tokenizer.eos_token
                    for gt_json in gt_jsons  # load json from list of json
                ]
            )

        self.donut_model.decoder.add_special_tokens([self.task_start_token, self.prompt_end_token])
        self.prompt_end_token_id = self.donut_model.decoder.tokenizer.convert_tokens_to_ids(self.prompt_end_token)

    def __len__(self) -> int:
        return self.dataset_length

    def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
98
        Load image from image_path of given dataset_path and convert into input_tensor and labels.
Geewook Kim's avatar
Geewook Kim committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        Convert gt data into input_ids (tokenized string)

        Returns:
            input_tensor : preprocessed image
            input_ids : tokenized gt_data
            labels : masked labels (model doesn't need to predict prompt and pad token)
        """
        sample = self.dataset[idx]

        # input_tensor
        input_tensor = self.donut_model.encoder.prepare_input(sample["image"], random_padding=self.split == "train")

        # input_ids
        processed_parse = random.choice(self.gt_token_sequences[idx])  # can be more than one, e.g., DocVQA Task 1
        input_ids = self.donut_model.decoder.tokenizer(
            processed_parse,
            add_special_tokens=False,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )["input_ids"].squeeze(0)

        if self.split == "train":
            labels = input_ids.clone()
            labels[
                labels == self.donut_model.decoder.tokenizer.pad_token_id
            ] = self.ignore_id  # model doesn't need to predict pad token
            labels[
                : torch.nonzero(labels == self.prompt_end_token_id).sum() + 1
            ] = self.ignore_id  # model doesn't need to predict prompt (for VQA)
            return input_tensor, input_ids, labels
        else:
            prompt_end_index = torch.nonzero(
                input_ids == self.prompt_end_token_id
            ).sum()  # return prompt end index instead of target output labels
            return input_tensor, input_ids, prompt_end_index, processed_parse


class JSONParseEvaluator:
    """
Geewook Kim's avatar
Geewook Kim committed
140
    Calculate n-TED(Normalized Tree Edit Distance) based accuracy and F1 accuracy score
Geewook Kim's avatar
Geewook Kim committed
141
142
    """

143
144
145
146
147
148
149
150
151
152
153
154
    @staticmethod
    def flatten(data: dict):
        """
        Convert Dictionary into Non-nested Dictionary
        Example:
            input(dict)
                {
                    "menu": [
                        {"name" : ["cake"], "count" : ["2"]},
                        {"name" : ["juice"], "count" : ["1"]},
                    ]
                }
Geewook Kim's avatar
Geewook Kim committed
155
156
157
158
159
160
161
            output(list)
                [
                    ("menu.name", "cake"),
                    ("menu.count", "2"),
                    ("menu.name", "juice"),
                    ("menu.count", "1"),
                ]
162
        """
Geewook Kim's avatar
Geewook Kim committed
163
        flatten_data = list()
164
165
166
167
168
169
170
171
172

        def _flatten(value, key=""):
            if type(value) is dict:
                for child_key, child_value in value.items():
                    _flatten(child_value, f"{key}.{child_key}" if key else child_key)
            elif type(value) is list:
                for value_item in value:
                    _flatten(value_item, key)
            else:
Geewook Kim's avatar
Geewook Kim committed
173
                flatten_data.append((key, value))
174
175

        _flatten(data)
Geewook Kim's avatar
Geewook Kim committed
176
        return flatten_data
177

Geewook Kim's avatar
Geewook Kim committed
178
    @staticmethod
Geewook Kim's avatar
Geewook Kim committed
179
    def update_cost(node1: Node, node2: Node):
Geewook Kim's avatar
Geewook Kim committed
180
181
182
183
        """
        Update cost for tree edit distance.
        If both are leaf node, calculate string edit distance between two labels (special token '<leaf>' will be ignored).
        If one of them is leaf node, cost is length of string in leaf node + 1.
184
        If neither are leaf node, cost is 0 if label1 is same with label2 othewise 1
Geewook Kim's avatar
Geewook Kim committed
185
        """
Geewook Kim's avatar
Geewook Kim committed
186
187
        label1 = node1.label
        label2 = node2.label
Geewook Kim's avatar
Geewook Kim committed
188
189
190
191
192
193
194
195
196
197
198
199
        label1_leaf = "<leaf>" in label1
        label2_leaf = "<leaf>" in label2
        if label1_leaf == True and label2_leaf == True:
            return edit_distance(label1.replace("<leaf>", ""), label2.replace("<leaf>", ""))
        elif label1_leaf == False and label2_leaf == True:
            return 1 + len(label2.replace("<leaf>", ""))
        elif label1_leaf == True and label2_leaf == False:
            return 1 + len(label1.replace("<leaf>", ""))
        else:
            return int(label1 != label2)

    @staticmethod
200
    def insert_and_remove_cost(node: Node):
Geewook Kim's avatar
Geewook Kim committed
201
202
203
204
205
206
207
208
209
210
211
212
213
        """
        Insert and remove cost for tree edit distance.
        If leaf node, cost is length of label name.
        Otherwise, 1
        """
        label = node.label
        if "<leaf>" in label:
            return len(label.replace("<leaf>", ""))
        else:
            return 1

    def normalize_dict(self, data: Union[Dict, List, Any]):
        """
214
        Sort by value, while iterate over element if data is list
Geewook Kim's avatar
Geewook Kim committed
215
216
217
218
219
220
        """
        if not data:
            return {}

        if isinstance(data, dict):
            new_data = dict()
Geewook Kim's avatar
Geewook Kim committed
221
222
            for key in sorted(data.keys(), key=lambda k: (len(k), k)):
                value = self.normalize_dict(data[key])
Geewook Kim's avatar
Geewook Kim committed
223
224
225
226
227
228
229
230
                if value:
                    if not isinstance(value, list):
                        value = [value]
                    new_data[key] = value

        elif isinstance(data, list):
            if all(isinstance(item, dict) for item in data):
                new_data = []
Geewook Kim's avatar
Geewook Kim committed
231
                for item in data:
Geewook Kim's avatar
Geewook Kim committed
232
233
234
235
                    item = self.normalize_dict(item)
                    if item:
                        new_data.append(item)
            else:
Geewook Kim's avatar
Geewook Kim committed
236
                new_data = [str(item).strip() for item in data if type(item) in {str, int, float} and str(item).strip()]
Geewook Kim's avatar
Geewook Kim committed
237
        else:
Geewook Kim's avatar
Geewook Kim committed
238
            new_data = [str(data).strip()]
Geewook Kim's avatar
Geewook Kim committed
239
240
241

        return new_data

242
243
244
245
246
247
248
    def cal_f1(self, preds: List[dict], answers: List[dict]):
        """
        Calculate global F1 accuracy score (field-level, micro-averaged) by counting all true positives, false negatives and false positives
        """
        total_tp, total_fn_or_fp = 0, 0
        for pred, answer in zip(preds, answers):
            pred, answer = self.flatten(self.normalize_dict(pred)), self.flatten(self.normalize_dict(answer))
Geewook Kim's avatar
Geewook Kim committed
249
250
251
252
253
254
255
256
            for field in pred:
                if field in answer:
                    total_tp += 1
                    answer.remove(field)
                else:
                    total_fn_or_fp += 1
            total_fn_or_fp += len(answer)
        return total_tp / (total_tp + total_fn_or_fp / 2)
257

Geewook Kim's avatar
Geewook Kim committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    def construct_tree_from_dict(self, data: Union[Dict, List], node_name: str = None):
        """
        Convert Dictionary into Tree

        Example:
            input(dict)

                {
                    "menu": [
                        {"name" : ["cake"], "count" : ["2"]},
                        {"name" : ["juice"], "count" : ["1"]},
                    ]
                }

            output(tree)
                                     <root>
                                       |
                                     menu
                                    /    \
                             <subtree>  <subtree>
                            /      |     |      \
                         name    count  name    count
                        /         |     |         \
                  <leaf>cake  <leaf>2  <leaf>juice  <leaf>1
         """
        if node_name is None:
            node_name = "<root>"

        node = Node(node_name)

        if isinstance(data, dict):
            for key, value in data.items():
                kid_node = self.construct_tree_from_dict(value, key)
                node.addkid(kid_node)
        elif isinstance(data, list):
            if all(isinstance(item, dict) for item in data):
                for item in data:
                    kid_node = self.construct_tree_from_dict(
                        item,
                        "<subtree>",
                    )
                    node.addkid(kid_node)
            else:
                for item in data:
                    node.addkid(Node(f"<leaf>{item}"))
        else:
            raise Exception(data, node_name)
        return node

307
    def cal_acc(self, pred: dict, answer: dict):
Geewook Kim's avatar
Geewook Kim committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        """
        Calculate normalized tree edit distance(nTED) based accuracy.
        1) Construct tree from dict,
        2) Get tree distance with insert/remove/update cost,
        3) Divide distance with GT tree size (i.e., nTED),
        4) Calculate nTED based accuracy. (= max(1 - nTED, 0 ).
        """
        pred = self.construct_tree_from_dict(self.normalize_dict(pred))
        answer = self.construct_tree_from_dict(self.normalize_dict(answer))
        return max(
            0,
            1
            - (
                zss.distance(
                    pred,
                    answer,
                    get_children=zss.Node.get_children,
                    insert_cost=self.insert_and_remove_cost,
                    remove_cost=self.insert_and_remove_cost,
                    update_cost=self.update_cost,
                    return_operations=False,
                )
                / zss.distance(
                    self.construct_tree_from_dict(self.normalize_dict({})),
                    answer,
                    get_children=zss.Node.get_children,
                    insert_cost=self.insert_and_remove_cost,
                    remove_cost=self.insert_and_remove_cost,
                    update_cost=self.update_cost,
                    return_operations=False,
                )
            ),
        )