train.py 6.14 KB
Newer Older
Geewook Kim's avatar
Geewook Kim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import argparse
import datetime
import json
import os
import random
from io import BytesIO
from os.path import basename
from pathlib import Path

import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.plugins import CheckpointIO
from pytorch_lightning.utilities import rank_zero_only
from sconf import Config

from donut import DonutDataset
from lightning_module import DonutDataPLModule, DonutModelPLModule


class CustomCheckpointIO(CheckpointIO):
    def save_checkpoint(self, checkpoint, path, storage_options=None):
        del checkpoint["state_dict"]
        torch.save(checkpoint, path)

    def load_checkpoint(self, path, storage_options=None):
        checkpoint = torch.load(path + "artifacts.ckpt")
        state_dict = torch.load(path + "pytorch_model.bin")
        checkpoint["state_dict"] = {"model." + key: value for key, value in state_dict.items()}
        return checkpoint

    def remove_checkpoint(self, path) -> None:
        return super().remove_checkpoint(path)


@rank_zero_only
def save_config_file(config, path):
    if not Path(path).exists():
        os.makedirs(path)
    save_path = Path(path) / "config.yaml"
    print(config.dumps())
    with open(save_path, "w") as f:
        f.write(config.dumps(modified_color=None, quote_str=True))
        print(f"Config is saved at {save_path}")


Minseo Kang's avatar
Minseo Kang committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class ProgressBar(pl.callbacks.TQDMProgressBar):
    def __init__(self, config):
        super().__init__()
        self.enable = True
        self.config = config

    def disable(self):
        self.enable = False

    def get_metrics(self, trainer, model):
        items = super().get_metrics(trainer, model)
        items.pop("v_num", None)
        items["exp_name"] = f"{self.config.get('exp_name', '')}"
        items["exp_version"] = f"{self.config.get('exp_version', '')}"
        return items


def set_seed(seed):
    pytorch_lightning_version = int(pl.__version__[0])
    if pytorch_lightning_version < 2:
        pl.utilities.seed.seed_everything(seed, workers=True)
    else:
        import lightning_fabric
        lightning_fabric.utilities.seed.seed_everything(seed, workers=True)


Geewook Kim's avatar
Geewook Kim committed
80
def train(config):
Minseo Kang's avatar
Minseo Kang committed
81
    set_seed(config.get("seed", 42))
Geewook Kim's avatar
Geewook Kim committed
82
83
84
85
86
87
88
89

    model_module = DonutModelPLModule(config)
    data_module = DonutDataPLModule(config)

    # add datasets to data_module
    datasets = {"train": [], "validation": []}
    for i, dataset_name_or_path in enumerate(config.dataset_name_or_paths):
        task_name = os.path.basename(dataset_name_or_path)  # e.g., cord-v2, docvqa, rvlcdip, ...
90
91
92
93
94
95
96
97
98
99
100
101
        
        # add categorical special tokens (optional)
        if task_name == "rvlcdip":
            model_module.model.decoder.add_special_tokens([
                "<advertisement/>", "<budget/>", "<email/>", "<file_folder/>", 
                "<form/>", "<handwritten/>", "<invoice/>", "<letter/>", 
                "<memo/>", "<news_article/>", "<presentation/>", "<questionnaire/>", 
                "<resume/>", "<scientific_publication/>", "<scientific_report/>", "<specification/>"
            ])
        if task_name == "docvqa":
            model_module.model.decoder.add_special_tokens(["<yes/>", "<no/>"])
            
Geewook Kim's avatar
Geewook Kim committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        for split in ["train", "validation"]:
            datasets[split].append(
                DonutDataset(
                    dataset_name_or_path=dataset_name_or_path,
                    donut_model=model_module.model,
                    max_length=config.max_length,
                    split=split,
                    task_start_token=config.task_start_tokens[i]
                    if config.get("task_start_tokens", None)
                    else f"<s_{task_name}>",
                    prompt_end_token="<s_answer>" if "docvqa" in dataset_name_or_path else f"<s_{task_name}>",
                    sort_json_key=config.sort_json_key,
                )
            )
            # prompt_end_token is used for ignoring a given prompt in a loss function
            # for docvqa task, i.e., {"question": {used as a prompt}, "answer": {prediction target}},
            # set prompt_end_token to "<s_answer>"
    data_module.train_datasets = datasets["train"]
    data_module.val_datasets = datasets["validation"]

    logger = TensorBoardLogger(
        save_dir=config.result_path,
        name=config.exp_name,
        version=config.exp_version,
        default_hp_metric=False,
    )

    lr_callback = LearningRateMonitor(logging_interval="step")

    checkpoint_callback = ModelCheckpoint(
        monitor="val_metric",
        dirpath=Path(config.result_path) / config.exp_name / config.exp_version,
        filename="artifacts",
        save_top_k=1,
        save_last=False,
        mode="min",
    )

Minseo Kang's avatar
Minseo Kang committed
140
141
    bar = ProgressBar(config)

Geewook Kim's avatar
Geewook Kim committed
142
143
144
    custom_ckpt = CustomCheckpointIO()
    trainer = pl.Trainer(
        num_nodes=config.get("num_nodes", 1),
Minseo Kang's avatar
Minseo Kang committed
145
        devices=torch.cuda.device_count(),
Geewook Kim's avatar
Geewook Kim committed
146
147
148
149
150
151
152
153
154
155
156
        strategy="ddp",
        accelerator="gpu",
        plugins=custom_ckpt,
        max_epochs=config.max_epochs,
        max_steps=config.max_steps,
        val_check_interval=config.val_check_interval,
        check_val_every_n_epoch=config.check_val_every_n_epoch,
        gradient_clip_val=config.gradient_clip_val,
        precision=16,
        num_sanity_val_steps=0,
        logger=logger,
Minseo Kang's avatar
Minseo Kang committed
157
        callbacks=[lr_callback, checkpoint_callback, bar],
Geewook Kim's avatar
Geewook Kim committed
158
159
    )

Minseo Kang's avatar
Minseo Kang committed
160
    trainer.fit(model_module, data_module, ckpt_path=config.get("resume_from_checkpoint_path", None))
Geewook Kim's avatar
Geewook Kim committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True)
    parser.add_argument("--exp_version", type=str, required=False)
    args, left_argv = parser.parse_known_args()

    config = Config(args.config)
    config.argv_update(left_argv)

    config.exp_name = basename(args.config).split(".")[0]
    config.exp_version = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") if not args.exp_version else args.exp_version

    save_config_file(config, Path(config.result_path) / config.exp_name / config.exp_version)
    train(config)