lightning_module.py 7.59 KB
Newer Older
Geewook Kim's avatar
Geewook Kim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import math
import random
import re
from pathlib import Path

import numpy as np
import pytorch_lightning as pl
import torch
from nltk import edit_distance
from pytorch_lightning.utilities import rank_zero_only
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torch.nn.utils.rnn import pad_sequence
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader

from donut import DonutConfig, DonutModel


class DonutModelPLModule(pl.LightningModule):
    def __init__(self, config):
        super().__init__()
        self.config = config

        if self.config.get("pretrained_model_name_or_path", False):
            self.model = DonutModel.from_pretrained(
                self.config.pretrained_model_name_or_path,
                input_size=self.config.input_size,
                max_length=self.config.max_length,
                align_long_axis=self.config.align_long_axis,
                ignore_mismatched_sizes=True,
            )
        else:
            self.model = DonutModel(
                config=DonutConfig(
                    input_size=self.config.input_size,
                    max_length=self.config.max_length,
                    align_long_axis=self.config.align_long_axis,
                    # with DonutConfig, the architecture customization is available, e.g.,
                    # encoder_layer=[2,2,14,2], decoder_layer=4, ...
                )
            )
Minseo Kang's avatar
Minseo Kang committed
47
48
        self.pytorch_lightning_version_is_1 = int(pl.__version__[0]) < 2
        self.num_of_loaders = len(self.config.dataset_name_or_paths)
Geewook Kim's avatar
Geewook Kim committed
49
50
51
52
53
54
55
56
57
58
59
60

    def training_step(self, batch, batch_idx):
        image_tensors, decoder_input_ids, decoder_labels = list(), list(), list()
        for batch_data in batch:
            image_tensors.append(batch_data[0])
            decoder_input_ids.append(batch_data[1][:, :-1])
            decoder_labels.append(batch_data[2][:, 1:])
        image_tensors = torch.cat(image_tensors)
        decoder_input_ids = torch.cat(decoder_input_ids)
        decoder_labels = torch.cat(decoder_labels)
        loss = self.model(image_tensors, decoder_input_ids, decoder_labels)[0]
        self.log_dict({"train_loss": loss}, sync_dist=True)
Minseo Kang's avatar
Minseo Kang committed
61
62
        if not self.pytorch_lightning_version_is_1:
            self.log('loss', loss, prog_bar=True)
Geewook Kim's avatar
Geewook Kim committed
63
64
        return loss

Minseo Kang's avatar
Minseo Kang committed
65
66
67
68
69
70
    def on_validation_epoch_start(self) -> None:
        super().on_validation_epoch_start()
        self.validation_step_outputs = [[] for _ in range(self.num_of_loaders)]
        return

    def validation_step(self, batch, batch_idx, dataloader_idx=0):
Geewook Kim's avatar
Geewook Kim committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        image_tensors, decoder_input_ids, prompt_end_idxs, answers = batch
        decoder_prompts = pad_sequence(
            [input_id[: end_idx + 1] for input_id, end_idx in zip(decoder_input_ids, prompt_end_idxs)],
            batch_first=True,
        )

        preds = self.model.inference(
            image_tensors=image_tensors,
            prompt_tensors=decoder_prompts,
            return_json=False,
            return_attentions=False,
        )["predictions"]

        scores = list()
        for pred, answer in zip(preds, answers):
            pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
            answer = re.sub(r"<.*?>", "", answer, count=1)
            answer = answer.replace(self.model.decoder.tokenizer.eos_token, "")
            scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))

            if self.config.get("verbose", False) and len(scores) == 1:
                self.print(f"Prediction: {pred}")
                self.print(f"    Answer: {answer}")
                self.print(f" Normed ED: {scores[0]}")

Minseo Kang's avatar
Minseo Kang committed
96
97
        self.validation_step_outputs[dataloader_idx].append(scores)

Geewook Kim's avatar
Geewook Kim committed
98
99
        return scores

Minseo Kang's avatar
Minseo Kang committed
100
101
102
103
104
105
    def on_validation_epoch_end(self):
        assert len(self.validation_step_outputs) == self.num_of_loaders
        cnt = [0] * self.num_of_loaders
        total_metric = [0] * self.num_of_loaders
        val_metric = [0] * self.num_of_loaders
        for i, results in enumerate(self.validation_step_outputs):
Geewook Kim's avatar
Geewook Kim committed
106
107
108
109
110
111
112
113
114
115
116
117
            for scores in results:
                cnt[i] += len(scores)
                total_metric[i] += np.sum(scores)
            val_metric[i] = total_metric[i] / cnt[i]
            val_metric_name = f"val_metric_{i}th_dataset"
            self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
        self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)

    def configure_optimizers(self):

        max_iter = None

118
        if int(self.config.get("max_epochs", -1)) > 0:
Geewook Kim's avatar
Geewook Kim committed
119
120
121
122
123
            assert len(self.config.train_batch_sizes) == 1, "Set max_epochs only if the number of datasets is 1"
            max_iter = (self.config.max_epochs * self.config.num_training_samples_per_epoch) / (
                self.config.train_batch_sizes[0] * torch.cuda.device_count() * self.config.get("num_nodes", 1)
            )

124
        if int(self.config.get("max_steps", -1)) > 0:
125
            max_iter = min(self.config.max_steps, max_iter) if max_iter is not None else self.config.max_steps
Geewook Kim's avatar
Geewook Kim committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        assert max_iter is not None
        optimizer = torch.optim.Adam(self.parameters(), lr=self.config.lr)
        scheduler = {
            "scheduler": self.cosine_scheduler(optimizer, max_iter, self.config.warmup_steps),
            "name": "learning_rate",
            "interval": "step",
        }
        return [optimizer], [scheduler]

    @staticmethod
    def cosine_scheduler(optimizer, training_steps, warmup_steps):
        def lr_lambda(current_step):
            if current_step < warmup_steps:
                return current_step / max(1, warmup_steps)
            progress = current_step - warmup_steps
            progress /= max(1, training_steps - warmup_steps)
            return max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress)))

        return LambdaLR(optimizer, lr_lambda)

    @rank_zero_only
    def on_save_checkpoint(self, checkpoint):
        save_path = Path(self.config.result_path) / self.config.exp_name / self.config.exp_version
        self.model.save_pretrained(save_path)
        self.model.decoder.tokenizer.save_pretrained(save_path)


class DonutDataPLModule(pl.LightningDataModule):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.train_batch_sizes = self.config.train_batch_sizes
        self.val_batch_sizes = self.config.val_batch_sizes
        self.train_datasets = []
        self.val_datasets = []
        self.g = torch.Generator()
        self.g.manual_seed(self.config.seed)

    def train_dataloader(self):
        loaders = list()
        for train_dataset, batch_size in zip(self.train_datasets, self.train_batch_sizes):
            loaders.append(
                DataLoader(
                    train_dataset,
                    batch_size=batch_size,
                    num_workers=self.config.num_workers,
                    pin_memory=True,
                    worker_init_fn=self.seed_worker,
                    generator=self.g,
                    shuffle=True,
                )
            )
        return loaders

    def val_dataloader(self):
        loaders = list()
        for val_dataset, batch_size in zip(self.val_datasets, self.val_batch_sizes):
            loaders.append(
                DataLoader(
                    val_dataset,
                    batch_size=batch_size,
                    pin_memory=True,
                    shuffle=False,
                )
            )
        return loaders

    @staticmethod
    def seed_worker(wordker_id):
        worker_seed = torch.initial_seed() % 2 ** 32
        np.random.seed(worker_seed)
        random.seed(worker_seed)