test.py 2.59 KB
Newer Older
Geewook Kim's avatar
Geewook Kim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import argparse
import json
import os
import re
from pathlib import Path

import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from tqdm import tqdm

from donut import DonutModel, JSONParseEvaluator, load_json, save_json


def test(args):
Geewook Kim's avatar
Geewook Kim committed
22
    pretrained_model = DonutModel.from_pretrained(args.pretrained_model_name_or_path)
Geewook Kim's avatar
Geewook Kim committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    if torch.cuda.is_available():
        pretrained_model.half()
        pretrained_model.to("cuda")
    else:
        pretrained_model.encoder.to(torch.bfloat16)

    pretrained_model.eval()

    if args.save_path:
        os.makedirs(os.path.dirname(args.save_path), exist_ok=True)

    output_list = []
    accs = []

    dataset = load_dataset(args.dataset_name_or_path, split=args.split)

    for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
        ground_truth = json.loads(sample["ground_truth"])

        if args.task_name == "docvqa":
            output = pretrained_model.inference(
                image=sample["image"],
                prompt=f"<s_{args.task_name}><s_question>{ground_truth["gt_parses"][0]['question'].lower()}</s_question><s_answer>",
            )["predictions"][0]
        else:
            output = pretrained_model.inference(image=sample["image"], prompt=f"<s_{args.task_name}>")["predictions"][0]

        if args.task_name == "rvlcdip":
            gt = ground_truth["gt_parse"]
            score = float(output["class"] == gt["class"])
        elif args.task_name == "docvqa":
            score = 0.0  # note: docvqa is evaluated on the official website
        else:
            gt = ground_truth["gt_parse"]
            evaluator = JSONParseEvaluator()
            score = evaluator.cal_acc(output, gt)

        accs.append(score)

        output_list.append(output)

    scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
    print(scores, f"length : {len(accs)}")

    if args.save_path:
        scores["predictions"] = output_list
        save_json(args.save_path, scores)

    return output_list


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
Geewook Kim's avatar
Geewook Kim committed
77
    parser.add_argument("--pretrained_model_name_or_path", type=str)
Geewook Kim's avatar
Geewook Kim committed
78
79
80
81
82
83
84
85
86
87
    parser.add_argument("--dataset_name_or_path", type=str)
    parser.add_argument("--split", type=str, default="test")
    parser.add_argument("--task_name", type=str, default=None)
    parser.add_argument("--save_path", type=str, default=None)
    args, left_argv = parser.parse_known_args()

    if args.task_name is None:
        args.task_name = os.path.basename(args.dataset_name_or_path)

    predicts = test(args)