preprocess.py 10.4 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import requests
import inspect
import random
from utils import *


class BBTFinCUGE:

    def __init__(self):
        # 原始数据路径
        self.raw_path = 'data/fincuge/raw'
        # 处理后的数据路径
        self.saved_path = 'data/fincuge'
        # 超对称数据集列表
        self.eval_datasets = ['fincqa', 'finese', 'finfe', 'finna', 'finnl', 'finnsp', 'finqa', 'finre']
        # 训练集与测试集
        self.splits = ['train', 'eval']
        # 数据链接
        self.url = 'https://raw.githubusercontent.com/ssymmetry/BBT-FinCUGE-Applications/main/FinCUGE_Publish/{dataset}/{split}_list.json'
        # 创建文件夹
        os.makedirs(self.raw_path, exist_ok=True)

    def download_all(self):
        # 下载所有数据集
        for eval_dataset in self.eval_datasets:
            try:
                for split in self.splits:
                    file_path = os.path.join(self.raw_path, '{}-{}.json'.format(eval_dataset, split))
                    if not os.path.exists(file_path):
                        file_url = self.url.format(dataset=eval_dataset, split=split)
                        print('download {}-{} dataset from {}'.format(eval_dataset, split, file_url))
                        response = requests.get(file_url)
                        if response.status_code == 200:
                            data = json.loads(response.content)
                            write_json(file_path, data)
                            print('successful to download dataset {}, saved to {}'.format(eval_dataset, file_path))
                        else:
                            print('failed to download dataset {}, status_code: {}'.format(eval_dataset, response.status_code))
                    else:
                        print('found existing {}-{}, skipping download ...'.format(eval_dataset, split))
            except Exception as e:
                print('failed to download dataset {}, {}'.format(eval_dataset, e))

    def process_finfe(self, split: str):
        eval_dataset = 'finfe'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        emotion_text_maps = {0: '消极', 1: '中性', 2: '积极'}
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": example[0],
                "gold_answer": emotion_text_maps.get(example[1]),
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    def process_finqa(self, split: str):
        eval_dataset = 'finqa'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": example[0],
                "gold_answer": example[1],
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    def process_fincqa(self, split: str):
        eval_dataset = 'fincqa'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": example[0],
                "gold_answer": example[1],
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    def process_finna(self, split: str):
        eval_dataset = 'finna'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": example[1],
                "gold_answer": example[0],
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    def process_finre(self, split: str):
        eval_dataset = 'finre'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": [example[3], example[0], example[1]],
                "gold_answer": example[2],
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    def process_finnl(self, split: str):
        eval_dataset = 'finnl'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": example[0],
                "gold_answer": example[1],
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    def process_finnsp(self, split: str):
        eval_dataset = 'finnsp'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances1, instances2 = [], []
        for i, example in enumerate(data):
            instance1 = {
                "id": '-'.join([split, str(i + 1)]),
                "input": example[2],
                "gold_answer": example[4],
                'source': eval_dataset
            }
            instances1.append(instance1)
        data2 = []
        for list in data:
            if list[4]=='1':
                data2.append(list)
        for i, example in enumerate(data2):
            instance2 = {
                "id": '-'.join([split, str(i + 1)]),
                "input": [example[2], example[3]],
                "gold_answer": example[5],
                'source': eval_dataset
            }
            instances2.append(instance2)
        return instances1, instances2

    def process_finese(self, split: str):
        eval_dataset = 'finese'
        # 获取函数名
        func_name = inspect.getframeinfo(inspect.currentframe()).function
        # 确保函数名与数据集名称相对应
        assert eval_dataset == func_name.replace('process_', '')
        data = load_json(os.path.join(self.raw_path, '{}-{}.json').format(eval_dataset, split))
        instances = []
        for i, example in enumerate(data):
            instance = {
                "id": '-'.join([split, str(i + 1)]),
                "input": [example[1], example[2]],
                "gold_answer": example[3],
                'source': eval_dataset
            }
            instances.append(instance)
        return instances

    # 定义每个数据集的数据处理函数 ...
    # ['fincqa', 'finese', 'finfe', 'finna', 'finne', 'finnl', 'finnsp', 'finqa', 'finre']
    # def process_fincqa(self, split: str):
    #     pass
    #
    # def process_finese(self, split: str):
    #     pass
    #
    # def process_finna(self, split: str):
    #     pass


if __name__ == '__main__':

    random.seed(123)

    process = BBTFinCUGE()
    process.download_all()

    # 每个数据集随机抽取10个样本
    num_instances = 10
    instruct_samples = {}

    for dataset in process.eval_datasets:
        # if dataset == 'finre':
        # 如果有一些数据集需要处理成多个数据集,则使用if来进行分支
        #     pass
        # else:
        #     pass
        if dataset != 'finnsp':
            process_func = getattr(process, 'process_' + dataset, None)
            if process_func is not None:
                # 对于训练集,随机挑选k个样本
                train_instances = process_func(split='train')
                instruct_samples[dataset] = random.sample(train_instances, k=num_instances)
                # 对于测试集,保存到对应路径
                eval_instances = process_func(split='eval')
                write_json(os.path.join(process.saved_path, dataset + '-eval.jsonl'), eval_instances)
        else:
            process_func = getattr(process, 'process_' + dataset, None)
            if process_func is not None:
                # 对于训练集,随机挑选k个样本
                train_instances1, train_instances2 = process_func(split='train')
                instruct_samples[dataset + '1'] = random.sample(train_instances1, k=num_instances)
                instruct_samples[dataset + '2'] = random.sample(train_instances2, k=num_instances)
                # 对于测试集,保存到对应路径
                eval_instances1, eval_instances2 = process_func(split='eval')
                write_json(os.path.join(process.saved_path, dataset + '1' + '-eval.jsonl'), eval_instances1)
                write_json(os.path.join(process.saved_path, dataset + '2' + '-eval.jsonl'), eval_instances2)

    write_json(os.path.join(process.saved_path, 'instruct_samples.json'), instruct_samples)