"vscode:/vscode.git/clone" did not exist on "a0cfe3f631a5a889ded400f7bc7bc514cc01fb5d"
adapter.py 6.3 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from typing import TYPE_CHECKING

import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled

from ..extras.logging import get_logger
from .utils import find_all_linear_modules


if TYPE_CHECKING:
    from transformers.modeling_utils import PreTrainedModel

    from ..hparams import FinetuningArguments, ModelArguments


logger = get_logger(__name__)


def init_adapter(
    model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
) -> "PreTrainedModel":
    r"""
    Initializes the adapters.

    Support full-parameter, freeze and LoRA training.

    Note that the trainable parameters must be cast to float32.
    """

    if (not is_trainable) and model_args.adapter_name_or_path is None:
        logger.info("Adapter is not found at evaluation, load the base model.")
        return model

    if finetuning_args.finetuning_type == "full" and is_trainable:
        logger.info("Fine-tuning method: Full")
        model = model.float()

    if finetuning_args.finetuning_type == "freeze" and is_trainable:
        logger.info("Fine-tuning method: Freeze")
        num_layers = (
            getattr(model.config, "num_hidden_layers", None)
            or getattr(model.config, "num_layers", None)
            or getattr(model.config, "n_layer", None)
        )
        if not num_layers:
            raise ValueError("Current model does not support freeze tuning.")

        if finetuning_args.use_llama_pro:
            if num_layers % finetuning_args.num_layer_trainable != 0:
                raise ValueError(
                    "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
                        num_layers, finetuning_args.num_layer_trainable
                    )
                )

            stride = num_layers // finetuning_args.num_layer_trainable
            trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
        elif finetuning_args.num_layer_trainable > 0:  # fine-tuning the last n layers if num_layer_trainable > 0
            trainable_layer_ids = range(num_layers - finetuning_args.num_layer_trainable, num_layers)
        else:  # fine-tuning the first n layers if num_layer_trainable < 0
            trainable_layer_ids = range(-finetuning_args.num_layer_trainable)

        freeze_modules = {"all"}
        for name, _ in model.named_modules():
            if ".0." in name:
                freeze_modules.add(name.split(".0.")[-1].split(".")[0])

        trainable_layers = []
        for module_name in finetuning_args.name_module_trainable:
            if module_name not in freeze_modules:
                raise ValueError(
                    "Module {} is not found, please choose from {}".format(module_name, ", ".join(freeze_modules))
                )

            for idx in trainable_layer_ids:
                trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))

        for name, param in model.named_parameters():
            if any(trainable_layer in name for trainable_layer in trainable_layers):
                param.data = param.data.to(torch.float32)
            else:
                param.requires_grad_(False)

    if finetuning_args.finetuning_type == "lora":
        logger.info("Fine-tuning method: LoRA")
        adapter_to_resume = None

        if model_args.adapter_name_or_path is not None:
            is_mergeable = True
            if getattr(model, "quantization_method", None):  # merge lora in quantized model is unstable
                assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
                is_mergeable = False

            if is_deepspeed_zero3_enabled():
                assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
                is_mergeable = False

            if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
                adapter_to_merge = model_args.adapter_name_or_path[:-1]
                adapter_to_resume = model_args.adapter_name_or_path[-1]
            else:
                adapter_to_merge = model_args.adapter_name_or_path

            for adapter in adapter_to_merge:
                model: "LoraModel" = PeftModel.from_pretrained(model, adapter)
                model = model.merge_and_unload()

            if len(adapter_to_merge) > 0:
                logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))

            if adapter_to_resume is not None:  # resume lora training
                model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable)

        if is_trainable and adapter_to_resume is None:  # create new lora weights while training
            if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
                target_modules = find_all_linear_modules(model)
            else:
                target_modules = finetuning_args.lora_target

            peft_kwargs = {
                "r": finetuning_args.lora_rank,
                "target_modules": target_modules,
                "lora_alpha": finetuning_args.lora_alpha,
                "lora_dropout": finetuning_args.lora_dropout,
                "use_rslora": finetuning_args.use_rslora,
            }

            if model_args.use_unsloth:
                from unsloth import FastLanguageModel  # type: ignore

                unsloth_peft_kwargs = {"model": model, "max_seq_length": model_args.model_max_length}
                model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
            else:
                lora_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM,
                    inference_mode=False,
                    modules_to_save=finetuning_args.additional_target,
                    **peft_kwargs,
                )
                model = get_peft_model(model, lora_config)

        for param in filter(lambda p: p.requires_grad, model.parameters()):
            param.data = param.data.to(torch.bfloat16 if finetuning_args.lora_bf16_mode else torch.float32)

        if model_args.adapter_name_or_path is not None:
            logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))

    return model