"src/targets/vscode:/vscode.git/clone" did not exist on "bbe9d22ca5f75c649afe3fc340ec093626ec652d"
app.py 8.61 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import asyncio
import json
import os
from contextlib import asynccontextmanager
from typing import Any, Dict, Sequence

from pydantic import BaseModel

from ..chat import ChatModel
from ..data import Role as DataRole
from ..extras.misc import torch_gc
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available
from .protocol import (
    ChatCompletionMessage,
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionResponseUsage,
    ChatCompletionStreamResponse,
    Finish,
    Function,
    FunctionCall,
    ModelCard,
    ModelList,
    Role,
    ScoreEvaluationRequest,
    ScoreEvaluationResponse,
)


if is_fastapi_availble():
    from fastapi import FastAPI, HTTPException, status
    from fastapi.middleware.cors import CORSMiddleware


if is_starlette_available():
    from sse_starlette import EventSourceResponse


if is_uvicorn_available():
    import uvicorn


@asynccontextmanager
async def lifespan(app: "FastAPI"):  # collects GPU memory
    yield
    torch_gc()


def dictify(data: "BaseModel") -> Dict[str, Any]:
    try:  # pydantic v2
        return data.model_dump(exclude_unset=True)
    except AttributeError:  # pydantic v1
        return data.dict(exclude_unset=True)


def jsonify(data: "BaseModel") -> str:
    try:  # pydantic v2
        return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
    except AttributeError:  # pydantic v1
        return data.json(exclude_unset=True, ensure_ascii=False)


def create_app(chat_model: "ChatModel") -> "FastAPI":
    app = FastAPI(lifespan=lifespan)

    app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )

    semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
    role_mapping = {
        Role.USER: DataRole.USER,
        Role.ASSISTANT: DataRole.ASSISTANT,
        Role.SYSTEM: DataRole.SYSTEM,
        Role.FUNCTION: DataRole.FUNCTION,
        Role.TOOL: DataRole.OBSERVATION,
    }

    @app.get("/v1/models", response_model=ModelList)
    async def list_models():
        model_card = ModelCard(id="gpt-3.5-turbo")
        return ModelList(data=[model_card])

    @app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
    async def create_chat_completion(request: ChatCompletionRequest):
        if not chat_model.can_generate:
            raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")

        if len(request.messages) == 0:
            raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")

        if role_mapping[request.messages[0].role] == DataRole.SYSTEM:
            system = request.messages.pop(0).content
        else:
            system = ""

        if len(request.messages) % 2 == 0:
            raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")

        input_messages = []
        for i, message in enumerate(request.messages):
            input_messages.append({"role": role_mapping[message.role], "content": message.content})
            if i % 2 == 0 and input_messages[i]["role"] not in [DataRole.USER, DataRole.OBSERVATION]:
                raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
            elif i % 2 == 1 and input_messages[i]["role"] not in [DataRole.ASSISTANT, DataRole.FUNCTION]:
                raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")

        tool_list = request.tools
        if isinstance(tool_list, list) and len(tool_list):
            try:
                tools = json.dumps([tool["function"] for tool in tool_list], ensure_ascii=False)
            except Exception:
                raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
        else:
            tools = ""

        async with semaphore:
            loop = asyncio.get_running_loop()
            return await loop.run_in_executor(None, chat_completion, input_messages, system, tools, request)

    def chat_completion(messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest):
        if request.stream:
            if tools:
                raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")

            generate = stream_chat_completion(messages, system, tools, request)
            return EventSourceResponse(generate, media_type="text/event-stream")

        responses = chat_model.chat(
            messages,
            system,
            tools,
            do_sample=request.do_sample,
            temperature=request.temperature,
            top_p=request.top_p,
            max_new_tokens=request.max_tokens,
            num_return_sequences=request.n,
        )

        prompt_length, response_length = 0, 0
        choices = []
        for i, response in enumerate(responses):
            if tools:
                result = chat_model.template.format_tools.extract(response.response_text)
            else:
                result = response.response_text

            if isinstance(result, tuple):
                name, arguments = result
                function = Function(name=name, arguments=arguments)
                response_message = ChatCompletionMessage(
                    role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)]
                )
                finish_reason = Finish.TOOL
            else:
                response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
                finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH

            choices.append(
                ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)
            )
            prompt_length = response.prompt_length
            response_length += response.response_length

        usage = ChatCompletionResponseUsage(
            prompt_tokens=prompt_length,
            completion_tokens=response_length,
            total_tokens=prompt_length + response_length,
        )

        return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)

    def stream_chat_completion(
        messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
    ):
        choice_data = ChatCompletionResponseStreamChoice(
            index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None
        )
        chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
        yield jsonify(chunk)

        for new_text in chat_model.stream_chat(
            messages,
            system,
            tools,
            do_sample=request.do_sample,
            temperature=request.temperature,
            top_p=request.top_p,
            max_new_tokens=request.max_tokens,
        ):
            if len(new_text) == 0:
                continue

            choice_data = ChatCompletionResponseStreamChoice(
                index=0, delta=ChatCompletionMessage(content=new_text), finish_reason=None
            )
            chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
            yield jsonify(chunk)

        choice_data = ChatCompletionResponseStreamChoice(
            index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
        )
        chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
        yield jsonify(chunk)
        yield "[DONE]"

    @app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
    async def create_score_evaluation(request: ScoreEvaluationRequest):
        if chat_model.can_generate:
            raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")

        if len(request.messages) == 0:
            raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")

        async with semaphore:
            loop = asyncio.get_running_loop()
            return await loop.run_in_executor(None, get_score, request)

    def get_score(request: ScoreEvaluationRequest):
        scores = chat_model.get_scores(request.messages, max_length=request.max_length)
        return ScoreEvaluationResponse(model=request.model, scores=scores)

    return app


if __name__ == "__main__":
    chat_model = ChatModel()
    app = create_app(chat_model)
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)