loss.py 23 KB
Newer Older
luopl's avatar
init  
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# ========================================
# Modified by Shoufa Chen
# ========================================
# Modified by Peize Sun, Rufeng Zhang
# Contact: {sunpeize, cxrfzhang}@foxmail.com
#
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DiffusionDet model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn
from fvcore.nn import sigmoid_focal_loss_jit
import torchvision.ops as ops
from .util import box_ops
from .util.misc import get_world_size, is_dist_avail_and_initialized
from .util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh, generalized_box_iou


class SetCriterionDynamicK(nn.Module):
    """ This class computes the loss for DiffusionDet.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """
    def __init__(self, cfg, num_classes, matcher, weight_dict, eos_coef, losses, use_focal):
        """ Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.cfg = cfg
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        self.use_focal = use_focal
        self.use_fed_loss = cfg.MODEL.DiffusionDet.USE_FED_LOSS
        if self.use_fed_loss:
            self.fed_loss_num_classes = 50
            from detectron2.data.detection_utils import get_fed_loss_cls_weights
            cls_weight_fun = lambda: get_fed_loss_cls_weights(dataset_names=cfg.DATASETS.TRAIN, freq_weight_power=cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT_POWER)  # noqa
            fed_loss_cls_weights = cls_weight_fun()
            assert (
                    len(fed_loss_cls_weights) == self.num_classes
            ), "Please check the provided fed_loss_cls_weights. Their size should match num_classes"
            self.register_buffer("fed_loss_cls_weights", fed_loss_cls_weights)

        if self.use_focal:
            self.focal_loss_alpha = cfg.MODEL.DiffusionDet.ALPHA
            self.focal_loss_gamma = cfg.MODEL.DiffusionDet.GAMMA
        else:
            empty_weight = torch.ones(self.num_classes + 1)
            empty_weight[-1] = self.eos_coef
            self.register_buffer('empty_weight', empty_weight)

    # copy-paste from https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/roi_heads/fast_rcnn.py#L356
    def get_fed_loss_classes(self, gt_classes, num_fed_loss_classes, num_classes, weight):
        """
        Args:
            gt_classes: a long tensor of shape R that contains the gt class label of each proposal.
            num_fed_loss_classes: minimum number of classes to keep when calculating federated loss.
            Will sample negative classes if number of unique gt_classes is smaller than this value.
            num_classes: number of foreground classes
            weight: probabilities used to sample negative classes
        Returns:
            Tensor:
                classes to keep when calculating the federated loss, including both unique gt
                classes and sampled negative classes.
        """
        unique_gt_classes = torch.unique(gt_classes)
        prob = unique_gt_classes.new_ones(num_classes + 1).float()
        prob[-1] = 0
        if len(unique_gt_classes) < num_fed_loss_classes:
            prob[:num_classes] = weight.float().clone()
            prob[unique_gt_classes] = 0
            sampled_negative_classes = torch.multinomial(
                prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False
            )
            fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes])
        else:
            fed_loss_classes = unique_gt_classes
        return fed_loss_classes

    def loss_labels(self, outputs, targets, indices, num_boxes, log=False):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']
        batch_size = len(targets)

        # idx = self._get_src_permutation_idx(indices)
        # target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        src_logits_list = []
        target_classes_o_list = []
        # target_classes[idx] = target_classes_o
        for batch_idx in range(batch_size):
            valid_query = indices[batch_idx][0]
            gt_multi_idx = indices[batch_idx][1]
            if len(gt_multi_idx) == 0:
                continue
            bz_src_logits = src_logits[batch_idx]
            target_classes_o = targets[batch_idx]["labels"]
            target_classes[batch_idx, valid_query] = target_classes_o[gt_multi_idx]

            src_logits_list.append(bz_src_logits[valid_query])
            target_classes_o_list.append(target_classes_o[gt_multi_idx])

        if self.use_focal or self.use_fed_loss:
            num_boxes = torch.cat(target_classes_o_list).shape[0] if len(target_classes_o_list) != 0 else 1

            target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], self.num_classes + 1],
                                                dtype=src_logits.dtype, layout=src_logits.layout,
                                                device=src_logits.device)
            target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)

            gt_classes = torch.argmax(target_classes_onehot, dim=-1)
            target_classes_onehot = target_classes_onehot[:, :, :-1]

            src_logits = src_logits.flatten(0, 1)
            target_classes_onehot = target_classes_onehot.flatten(0, 1)
            if self.use_focal:
                cls_loss = sigmoid_focal_loss_jit(src_logits, target_classes_onehot, alpha=self.focal_loss_alpha, gamma=self.focal_loss_gamma, reduction="none")
            else:
                cls_loss = F.binary_cross_entropy_with_logits(src_logits, target_classes_onehot, reduction="none")
            if self.use_fed_loss:
                K = self.num_classes
                N = src_logits.shape[0]
                fed_loss_classes = self.get_fed_loss_classes(
                    gt_classes,
                    num_fed_loss_classes=self.fed_loss_num_classes,
                    num_classes=K,
                    weight=self.fed_loss_cls_weights,
                )
                fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1)
                fed_loss_classes_mask[fed_loss_classes] = 1
                fed_loss_classes_mask = fed_loss_classes_mask[:K]
                weight = fed_loss_classes_mask.view(1, K).expand(N, K).float()

                loss_ce = torch.sum(cls_loss * weight) / num_boxes
            else:
                loss_ce = torch.sum(cls_loss) / num_boxes

            losses = {'loss_ce': loss_ce}
        else:
            raise NotImplementedError

        return losses

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
           targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
           The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        assert 'pred_boxes' in outputs
        # idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs['pred_boxes']

        batch_size = len(targets)
        pred_box_list = []
        pred_norm_box_list = []
        tgt_box_list = []
        tgt_box_xyxy_list = []
        for batch_idx in range(batch_size):
            valid_query = indices[batch_idx][0]
            gt_multi_idx = indices[batch_idx][1]
            if len(gt_multi_idx) == 0:
                continue
            bz_image_whwh = targets[batch_idx]['image_size_xyxy']
            bz_src_boxes = src_boxes[batch_idx]
            bz_target_boxes = targets[batch_idx]["boxes"]  # normalized (cx, cy, w, h)
            bz_target_boxes_xyxy = targets[batch_idx]["boxes_xyxy"]  # absolute (x1, y1, x2, y2)
            pred_box_list.append(bz_src_boxes[valid_query])
            pred_norm_box_list.append(bz_src_boxes[valid_query] / bz_image_whwh)  # normalize (x1, y1, x2, y2)
            tgt_box_list.append(bz_target_boxes[gt_multi_idx])
            tgt_box_xyxy_list.append(bz_target_boxes_xyxy[gt_multi_idx])

        if len(pred_box_list) != 0:
            src_boxes = torch.cat(pred_box_list)
            src_boxes_norm = torch.cat(pred_norm_box_list)  # normalized (x1, y1, x2, y2)
            target_boxes = torch.cat(tgt_box_list)
            target_boxes_abs_xyxy = torch.cat(tgt_box_xyxy_list)
            num_boxes = src_boxes.shape[0]

            losses = {}
            # require normalized (x1, y1, x2, y2)
            loss_bbox = F.l1_loss(src_boxes_norm, box_cxcywh_to_xyxy(target_boxes), reduction='none')
            losses['loss_bbox'] = loss_bbox.sum() / num_boxes

            # loss_giou = giou_loss(box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))
            loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(src_boxes, target_boxes_abs_xyxy))
            losses['loss_giou'] = loss_giou.sum() / num_boxes
        else:
            losses = {'loss_bbox': outputs['pred_boxes'].sum() * 0,
                      'loss_giou': outputs['pred_boxes'].sum() * 0}

        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
        loss_map = {
            'labels': self.loss_labels,
            'boxes': self.loss_boxes,
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)

    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices, _ = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices, _ = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses


class HungarianMatcherDynamicK(nn.Module):
    """This class computes an assignment between the targets and the predictions of the network
    For efficiency reasons, the targets don't include the no_object. Because of this, in general,
    there are more predictions than targets. In this case, we do a 1-to-k (dynamic) matching of the best predictions,
    while the others are un-matched (and thus treated as non-objects).
    """
    def __init__(self, cfg, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, cost_mask: float = 1, use_focal: bool = False):
        """Creates the matcher
        Params:
            cost_class: This is the relative weight of the classification error in the matching cost
            cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
            cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
        """
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        self.use_focal = use_focal
        self.use_fed_loss = cfg.MODEL.DiffusionDet.USE_FED_LOSS
        self.ota_k = cfg.MODEL.DiffusionDet.OTA_K
        if self.use_focal:
            self.focal_loss_alpha = cfg.MODEL.DiffusionDet.ALPHA
            self.focal_loss_gamma = cfg.MODEL.DiffusionDet.GAMMA
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0,  "all costs cant be 0"

    def forward(self, outputs, targets):
        """ simOTA for detr"""
        with torch.no_grad():
            bs, num_queries = outputs["pred_logits"].shape[:2]
            # We flatten to compute the cost matrices in a batch
            if self.use_focal or self.use_fed_loss:
                out_prob = outputs["pred_logits"].sigmoid()  # [batch_size, num_queries, num_classes]
                out_bbox = outputs["pred_boxes"]  # [batch_size,  num_queries, 4]
            else:
                out_prob = outputs["pred_logits"].softmax(-1)  # [batch_size, num_queries, num_classes]
                out_bbox = outputs["pred_boxes"]  # [batch_size, num_queries, 4]

            indices = []
            matched_ids = []
            assert bs == len(targets)
            for batch_idx in range(bs):
                bz_boxes = out_bbox[batch_idx]  # [num_proposals, 4]
                bz_out_prob = out_prob[batch_idx]
                bz_tgt_ids = targets[batch_idx]["labels"]
                num_insts = len(bz_tgt_ids)
                if num_insts == 0:  # empty object in key frame
                    non_valid = torch.zeros(bz_out_prob.shape[0]).to(bz_out_prob) > 0
                    indices_batchi = (non_valid, torch.arange(0, 0).to(bz_out_prob))
                    matched_qidx = torch.arange(0, 0).to(bz_out_prob)
                    indices.append(indices_batchi)
                    matched_ids.append(matched_qidx)
                    continue

                bz_gtboxs = targets[batch_idx]['boxes']  # [num_gt, 4] normalized (cx, xy, w, h)
                bz_gtboxs_abs_xyxy = targets[batch_idx]['boxes_xyxy']
                fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
                    box_xyxy_to_cxcywh(bz_boxes),  # absolute (cx, cy, w, h)
                    box_xyxy_to_cxcywh(bz_gtboxs_abs_xyxy),  # absolute (cx, cy, w, h)
                    expanded_strides=32
                )

                pair_wise_ious = ops.box_iou(bz_boxes, bz_gtboxs_abs_xyxy)

                # Compute the classification cost.
                if self.use_focal:
                    alpha = self.focal_loss_alpha
                    gamma = self.focal_loss_gamma
                    neg_cost_class = (1 - alpha) * (bz_out_prob ** gamma) * (-(1 - bz_out_prob + 1e-8).log())
                    pos_cost_class = alpha * ((1 - bz_out_prob) ** gamma) * (-(bz_out_prob + 1e-8).log())
                    cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
                elif self.use_fed_loss:
                    # focal loss degenerates to naive one
                    neg_cost_class = (-(1 - bz_out_prob + 1e-8).log())
                    pos_cost_class = (-(bz_out_prob + 1e-8).log())
                    cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
                else:
                    cost_class = -bz_out_prob[:, bz_tgt_ids]

                # Compute the L1 cost between boxes
                # image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets])
                # image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1)
                # image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets])

                bz_image_size_out = targets[batch_idx]['image_size_xyxy']
                bz_image_size_tgt = targets[batch_idx]['image_size_xyxy_tgt']

                bz_out_bbox_ = bz_boxes / bz_image_size_out  # normalize (x1, y1, x2, y2)
                bz_tgt_bbox_ = bz_gtboxs_abs_xyxy / bz_image_size_tgt  # normalize (x1, y1, x2, y2)
                cost_bbox = torch.cdist(bz_out_bbox_, bz_tgt_bbox_, p=1)

                cost_giou = -generalized_box_iou(bz_boxes, bz_gtboxs_abs_xyxy)

                # Final cost matrix
                cost = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + 100.0 * (~is_in_boxes_and_center)
                # cost = (cost_class + 3.0 * cost_giou + 100.0 * (~is_in_boxes_and_center))  # [num_query,num_gt]
                cost[~fg_mask] = cost[~fg_mask] + 10000.0

                # if bz_gtboxs.shape[0]>0:
                indices_batchi, matched_qidx = self.dynamic_k_matching(cost, pair_wise_ious, bz_gtboxs.shape[0])

                indices.append(indices_batchi)
                matched_ids.append(matched_qidx)

        return indices, matched_ids

    def get_in_boxes_info(self, boxes, target_gts, expanded_strides):
        xy_target_gts = box_cxcywh_to_xyxy(target_gts)  # (x1, y1, x2, y2)

        anchor_center_x = boxes[:, 0].unsqueeze(1)
        anchor_center_y = boxes[:, 1].unsqueeze(1)

        # whether the center of each anchor is inside a gt box
        b_l = anchor_center_x > xy_target_gts[:, 0].unsqueeze(0)
        b_r = anchor_center_x < xy_target_gts[:, 2].unsqueeze(0)
        b_t = anchor_center_y > xy_target_gts[:, 1].unsqueeze(0)
        b_b = anchor_center_y < xy_target_gts[:, 3].unsqueeze(0)
        # (b_l.long()+b_r.long()+b_t.long()+b_b.long())==4 [300,num_gt] ,
        is_in_boxes = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
        is_in_boxes_all = is_in_boxes.sum(1) > 0  # [num_query]
        # in fixed center
        center_radius = 2.5
        # Modified to self-adapted sampling --- the center size depends on the size of the gt boxes
        # https://github.com/dulucas/UVO_Challenge/blob/main/Track1/detection/mmdet/core/bbox/assigners/rpn_sim_ota_assigner.py#L212
        b_l = anchor_center_x > (target_gts[:, 0] - (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
        b_r = anchor_center_x < (target_gts[:, 0] + (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
        b_t = anchor_center_y > (target_gts[:, 1] - (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
        b_b = anchor_center_y < (target_gts[:, 1] + (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)

        is_in_centers = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
        is_in_centers_all = is_in_centers.sum(1) > 0

        is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
        is_in_boxes_and_center = (is_in_boxes & is_in_centers)

        return is_in_boxes_anchor, is_in_boxes_and_center

    def dynamic_k_matching(self, cost, pair_wise_ious, num_gt):
        matching_matrix = torch.zeros_like(cost)  # [300,num_gt]
        ious_in_boxes_matrix = pair_wise_ious
        n_candidate_k = self.ota_k

        # Take the sum of the predicted value and the top 10 iou of gt with the largest iou as dynamic_k
        topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=0)
        dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)

        for gt_idx in range(num_gt):
            _, pos_idx = torch.topk(cost[:, gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
            matching_matrix[:, gt_idx][pos_idx] = 1.0

        del topk_ious, dynamic_ks, pos_idx

        anchor_matching_gt = matching_matrix.sum(1)

        if (anchor_matching_gt > 1).sum() > 0:
            _, cost_argmin = torch.min(cost[anchor_matching_gt > 1], dim=1)
            matching_matrix[anchor_matching_gt > 1] *= 0
            matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1

        while (matching_matrix.sum(0) == 0).any():
            num_zero_gt = (matching_matrix.sum(0) == 0).sum()
            matched_query_id = matching_matrix.sum(1) > 0
            cost[matched_query_id] += 100000.0
            unmatch_id = torch.nonzero(matching_matrix.sum(0) == 0, as_tuple=False).squeeze(1)
            for gt_idx in unmatch_id:
                pos_idx = torch.argmin(cost[:, gt_idx])
                matching_matrix[:, gt_idx][pos_idx] = 1.0
            if (matching_matrix.sum(1) > 1).sum() > 0:  # If a query matches more than one gt
                _, cost_argmin = torch.min(cost[anchor_matching_gt > 1],
                                           dim=1)  # find gt for these queries with minimal cost
                matching_matrix[anchor_matching_gt > 1] *= 0  # reset mapping relationship
                matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1  # keep gt with minimal cost

        assert not (matching_matrix.sum(0) == 0).any()
        selected_query = matching_matrix.sum(1) > 0
        gt_indices = matching_matrix[selected_query].max(1)[1]
        assert selected_query.sum() == len(gt_indices)

        cost[matching_matrix == 0] = cost[matching_matrix == 0] + float('inf')
        matched_query_id = torch.min(cost, dim=0)[1]

        return (selected_query, gt_indices), matched_query_id