detector.py 22.4 KB
Newer Older
luopl's avatar
init  
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# ========================================
# Modified by Shoufa Chen
# ========================================
# Modified by Peize Sun, Rufeng Zhang
# Contact: {sunpeize, cxrfzhang}@foxmail.com
#
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import math
import random
from typing import List
from collections import namedtuple

import torch
import torch.nn.functional as F
from torch import nn

from detectron2.layers import batched_nms
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, detector_postprocess

from detectron2.structures import Boxes, ImageList, Instances

from .loss import SetCriterionDynamicK, HungarianMatcherDynamicK
from .head import DynamicHead
from .util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from .util.misc import nested_tensor_from_tensor_list

__all__ = ["DiffusionDet"]

ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d


def extract(a, t, x_shape):
    """extract the appropriate  t  index for a batch of indices"""
    batch_size = t.shape[0]
    out = a.gather(-1, t)
    return out.reshape(batch_size, *((1,) * (len(x_shape) - 1)))


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
    alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)


@META_ARCH_REGISTRY.register()
class DiffusionDet(nn.Module):
    """
    Implement DiffusionDet
    """

    def __init__(self, cfg):
        super().__init__()

        self.device = torch.device(cfg.MODEL.DEVICE)

        self.in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
        self.num_classes = cfg.MODEL.DiffusionDet.NUM_CLASSES
        self.num_proposals = cfg.MODEL.DiffusionDet.NUM_PROPOSALS
        self.hidden_dim = cfg.MODEL.DiffusionDet.HIDDEN_DIM
        self.num_heads = cfg.MODEL.DiffusionDet.NUM_HEADS

        # Build Backbone.
        self.backbone = build_backbone(cfg)
        self.size_divisibility = self.backbone.size_divisibility

        # build diffusion
        timesteps = 1000
        sampling_timesteps = cfg.MODEL.DiffusionDet.SAMPLE_STEP
        self.objective = 'pred_x0'
        betas = cosine_beta_schedule(timesteps)
        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.)
        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)

        self.sampling_timesteps = default(sampling_timesteps, timesteps)
        assert self.sampling_timesteps <= timesteps
        self.is_ddim_sampling = self.sampling_timesteps < timesteps
        self.ddim_sampling_eta = 1.
        self.self_condition = False
        self.scale = cfg.MODEL.DiffusionDet.SNR_SCALE
        self.box_renewal = True
        self.use_ensemble = True

        self.register_buffer('betas', betas)
        self.register_buffer('alphas_cumprod', alphas_cumprod)
        self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)

        # calculations for diffusion q(x_t | x_{t-1}) and others

        self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
        self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
        self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))

        # calculations for posterior q(x_{t-1} | x_t, x_0)

        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)

        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)

        self.register_buffer('posterior_variance', posterior_variance)

        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain

        self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min=1e-20)))
        self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
        self.register_buffer('posterior_mean_coef2',
                             (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))

        # Build Dynamic Head.
        self.head = DynamicHead(cfg=cfg, roi_input_shape=self.backbone.output_shape())
        # Loss parameters:
        class_weight = cfg.MODEL.DiffusionDet.CLASS_WEIGHT
        giou_weight = cfg.MODEL.DiffusionDet.GIOU_WEIGHT
        l1_weight = cfg.MODEL.DiffusionDet.L1_WEIGHT
        no_object_weight = cfg.MODEL.DiffusionDet.NO_OBJECT_WEIGHT
        self.deep_supervision = cfg.MODEL.DiffusionDet.DEEP_SUPERVISION
        self.use_focal = cfg.MODEL.DiffusionDet.USE_FOCAL
        self.use_fed_loss = cfg.MODEL.DiffusionDet.USE_FED_LOSS
        self.use_nms = cfg.MODEL.DiffusionDet.USE_NMS

        # Build Criterion.
        matcher = HungarianMatcherDynamicK(
            cfg=cfg, cost_class=class_weight, cost_bbox=l1_weight, cost_giou=giou_weight, use_focal=self.use_focal
        )
        weight_dict = {"loss_ce": class_weight, "loss_bbox": l1_weight, "loss_giou": giou_weight}
        if self.deep_supervision:
            aux_weight_dict = {}
            for i in range(self.num_heads - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        losses = ["labels", "boxes"]

        self.criterion = SetCriterionDynamicK(
            cfg=cfg, num_classes=self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight,
            losses=losses, use_focal=self.use_focal,)

        pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(3, 1, 1)
        pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(3, 1, 1)
        self.normalizer = lambda x: (x - pixel_mean) / pixel_std
        self.to(self.device)

    def predict_noise_from_start(self, x_t, t, x0):
        return (
                (extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
        )

    def model_predictions(self, backbone_feats, images_whwh, x, t, x_self_cond=None, clip_x_start=False):
        x_boxes = torch.clamp(x, min=-1 * self.scale, max=self.scale)
        x_boxes = ((x_boxes / self.scale) + 1) / 2
        x_boxes = box_cxcywh_to_xyxy(x_boxes)
        x_boxes = x_boxes * images_whwh[:, None, :]
        outputs_class, outputs_coord = self.head(backbone_feats, x_boxes, t, None)

        x_start = outputs_coord[-1]  # (batch, num_proposals, 4) predict boxes: absolute coordinates (x1, y1, x2, y2)
        x_start = x_start / images_whwh[:, None, :]
        x_start = box_xyxy_to_cxcywh(x_start)
        x_start = (x_start * 2 - 1.) * self.scale
        x_start = torch.clamp(x_start, min=-1 * self.scale, max=self.scale)
        pred_noise = self.predict_noise_from_start(x, t, x_start)

        return ModelPrediction(pred_noise, x_start), outputs_class, outputs_coord

    @torch.no_grad()
    def ddim_sample(self, batched_inputs, backbone_feats, images_whwh, images, clip_denoised=True, do_postprocess=True):
        batch = images_whwh.shape[0]
        shape = (batch, self.num_proposals, 4)
        total_timesteps, sampling_timesteps, eta, objective = self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta, self.objective

        # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
        times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)
        times = list(reversed(times.int().tolist()))
        time_pairs = list(zip(times[:-1], times[1:]))  # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]

        img = torch.randn(shape, device=self.device)

        ensemble_score, ensemble_label, ensemble_coord = [], [], []
        x_start = None
        for time, time_next in time_pairs:
            time_cond = torch.full((batch,), time, device=self.device, dtype=torch.long)
            self_cond = x_start if self.self_condition else None

            preds, outputs_class, outputs_coord = self.model_predictions(backbone_feats, images_whwh, img, time_cond,
                                                                         self_cond, clip_x_start=clip_denoised)
            pred_noise, x_start = preds.pred_noise, preds.pred_x_start

            if self.box_renewal:  # filter
                score_per_image, box_per_image = outputs_class[-1][0], outputs_coord[-1][0]
                threshold = 0.5
                score_per_image = torch.sigmoid(score_per_image)
                value, _ = torch.max(score_per_image, -1, keepdim=False)
                keep_idx = value > threshold
                num_remain = torch.sum(keep_idx)

                pred_noise = pred_noise[:, keep_idx, :]
                x_start = x_start[:, keep_idx, :]
                img = img[:, keep_idx, :]
            if time_next < 0:
                img = x_start
                continue

            alpha = self.alphas_cumprod[time]
            alpha_next = self.alphas_cumprod[time_next]

            sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
            c = (1 - alpha_next - sigma ** 2).sqrt()

            noise = torch.randn_like(img)

            img = x_start * alpha_next.sqrt() + \
                  c * pred_noise + \
                  sigma * noise

            if self.box_renewal:  # filter
                # replenish with randn boxes
                img = torch.cat((img, torch.randn(1, self.num_proposals - num_remain, 4, device=img.device)), dim=1)
            if self.use_ensemble and self.sampling_timesteps > 1:
                box_pred_per_image, scores_per_image, labels_per_image = self.inference(outputs_class[-1],
                                                                                        outputs_coord[-1],
                                                                                        images.image_sizes)
                ensemble_score.append(scores_per_image)
                ensemble_label.append(labels_per_image)
                ensemble_coord.append(box_pred_per_image)

        if self.use_ensemble and self.sampling_timesteps > 1:
            box_pred_per_image = torch.cat(ensemble_coord, dim=0)
            scores_per_image = torch.cat(ensemble_score, dim=0)
            labels_per_image = torch.cat(ensemble_label, dim=0)
            if self.use_nms:
                keep = batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
                box_pred_per_image = box_pred_per_image[keep]
                scores_per_image = scores_per_image[keep]
                labels_per_image = labels_per_image[keep]

            result = Instances(images.image_sizes[0])
            result.pred_boxes = Boxes(box_pred_per_image)
            result.scores = scores_per_image
            result.pred_classes = labels_per_image
            results = [result]
        else:
            output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
            box_cls = output["pred_logits"]
            box_pred = output["pred_boxes"]
            results = self.inference(box_cls, box_pred, images.image_sizes)
        if do_postprocess:
            processed_results = []
            for results_per_image, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes):
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                r = detector_postprocess(results_per_image, height, width)
                processed_results.append({"instances": r})
            return processed_results

    # forward diffusion
    def q_sample(self, x_start, t, noise=None):
        if noise is None:
            noise = torch.randn_like(x_start)

        sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
        sqrt_one_minus_alphas_cumprod_t = extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)

        return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise

    def forward(self, batched_inputs, do_postprocess=True):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances: Instances

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.
        """
        images, images_whwh = self.preprocess_image(batched_inputs)
        if isinstance(images, (list, torch.Tensor)):
            images = nested_tensor_from_tensor_list(images)

        # Feature Extraction.
        src = self.backbone(images.tensor)
        features = list()
        for f in self.in_features:
            feature = src[f]
            features.append(feature)

        # Prepare Proposals.
        if not self.training:
            results = self.ddim_sample(batched_inputs, features, images_whwh, images)
            return results

        if self.training:
            gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
            targets, x_boxes, noises, t = self.prepare_targets(gt_instances)
            t = t.squeeze(-1)
            x_boxes = x_boxes * images_whwh[:, None, :]

            outputs_class, outputs_coord = self.head(features, x_boxes, t, None)
            output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}

            if self.deep_supervision:
                output['aux_outputs'] = [{'pred_logits': a, 'pred_boxes': b}
                                         for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]

            loss_dict = self.criterion(output, targets)
            weight_dict = self.criterion.weight_dict
            for k in loss_dict.keys():
                if k in weight_dict:
                    loss_dict[k] *= weight_dict[k]
            return loss_dict

    def prepare_diffusion_repeat(self, gt_boxes):
        """
        :param gt_boxes: (cx, cy, w, h), normalized
        :param num_proposals:
        """
        t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
        noise = torch.randn(self.num_proposals, 4, device=self.device)

        num_gt = gt_boxes.shape[0]
        if not num_gt:  # generate fake gt boxes if empty gt boxes
            gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
            num_gt = 1

        num_repeat = self.num_proposals // num_gt  # number of repeat except the last gt box in one image
        repeat_tensor = [num_repeat] * (num_gt - self.num_proposals % num_gt) + [num_repeat + 1] * (
                self.num_proposals % num_gt)
        assert sum(repeat_tensor) == self.num_proposals
        random.shuffle(repeat_tensor)
        repeat_tensor = torch.tensor(repeat_tensor, device=self.device)

        gt_boxes = (gt_boxes * 2. - 1.) * self.scale
        x_start = torch.repeat_interleave(gt_boxes, repeat_tensor, dim=0)

        # noise sample
        x = self.q_sample(x_start=x_start, t=t, noise=noise)

        x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
        x = ((x / self.scale) + 1) / 2.

        diff_boxes = box_cxcywh_to_xyxy(x)

        return diff_boxes, noise, t

    def prepare_diffusion_concat(self, gt_boxes):
        """
        :param gt_boxes: (cx, cy, w, h), normalized
        :param num_proposals:
        """
        t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
        noise = torch.randn(self.num_proposals, 4, device=self.device)

        num_gt = gt_boxes.shape[0]
        if not num_gt:  # generate fake gt boxes if empty gt boxes
            gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
            num_gt = 1

        if num_gt < self.num_proposals:
            box_placeholder = torch.randn(self.num_proposals - num_gt, 4,
                                          device=self.device) / 6. + 0.5  # 3sigma = 1/2 --> sigma: 1/6
            box_placeholder[:, 2:] = torch.clip(box_placeholder[:, 2:], min=1e-4)
            x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
        elif num_gt > self.num_proposals:
            select_mask = [True] * self.num_proposals + [False] * (num_gt - self.num_proposals)
            random.shuffle(select_mask)
            x_start = gt_boxes[select_mask]
        else:
            x_start = gt_boxes

        x_start = (x_start * 2. - 1.) * self.scale

        # noise sample
        x = self.q_sample(x_start=x_start, t=t, noise=noise)

        x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
        x = ((x / self.scale) + 1) / 2.

        diff_boxes = box_cxcywh_to_xyxy(x)

        return diff_boxes, noise, t

    def prepare_targets(self, targets):
        new_targets = []
        diffused_boxes = []
        noises = []
        ts = []
        for targets_per_image in targets:
            target = {}
            h, w = targets_per_image.image_size
            image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
            gt_classes = targets_per_image.gt_classes
            gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy
            gt_boxes = box_xyxy_to_cxcywh(gt_boxes)
            d_boxes, d_noise, d_t = self.prepare_diffusion_concat(gt_boxes)
            diffused_boxes.append(d_boxes)
            noises.append(d_noise)
            ts.append(d_t)
            target["labels"] = gt_classes.to(self.device)
            target["boxes"] = gt_boxes.to(self.device)
            target["boxes_xyxy"] = targets_per_image.gt_boxes.tensor.to(self.device)
            target["image_size_xyxy"] = image_size_xyxy.to(self.device)
            image_size_xyxy_tgt = image_size_xyxy.unsqueeze(0).repeat(len(gt_boxes), 1)
            target["image_size_xyxy_tgt"] = image_size_xyxy_tgt.to(self.device)
            target["area"] = targets_per_image.gt_boxes.area().to(self.device)
            new_targets.append(target)

        return new_targets, torch.stack(diffused_boxes), torch.stack(noises), torch.stack(ts)

    def inference(self, box_cls, box_pred, image_sizes):
        """
        Arguments:
            box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
                The tensor predicts the classification probability for each proposal.
            box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
                The tensor predicts 4-vector (x,y,w,h) box
                regression values for every proposal
            image_sizes (List[torch.Size]): the input image sizes

        Returns:
            results (List[Instances]): a list of #images elements.
        """
        assert len(box_cls) == len(image_sizes)
        results = []

        if self.use_focal or self.use_fed_loss:
            scores = torch.sigmoid(box_cls)
            labels = torch.arange(self.num_classes, device=self.device). \
                unsqueeze(0).repeat(self.num_proposals, 1).flatten(0, 1)

            for i, (scores_per_image, box_pred_per_image, image_size) in enumerate(zip(
                    scores, box_pred, image_sizes
            )):
                result = Instances(image_size)
                scores_per_image, topk_indices = scores_per_image.flatten(0, 1).topk(self.num_proposals, sorted=False)
                labels_per_image = labels[topk_indices]
                box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(1, self.num_classes, 1).view(-1, 4)
                box_pred_per_image = box_pred_per_image[topk_indices]

                if self.use_ensemble and self.sampling_timesteps > 1:
                    return box_pred_per_image, scores_per_image, labels_per_image

                if self.use_nms:
                    keep = batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
                    box_pred_per_image = box_pred_per_image[keep]
                    scores_per_image = scores_per_image[keep]
                    labels_per_image = labels_per_image[keep]

                result.pred_boxes = Boxes(box_pred_per_image)
                result.scores = scores_per_image
                result.pred_classes = labels_per_image
                results.append(result)

        else:
            # For each box we assign the best class or the second best if the best on is `no_object`.
            scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)

            for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate(zip(
                    scores, labels, box_pred, image_sizes
            )):
                if self.use_ensemble and self.sampling_timesteps > 1:
                    return box_pred_per_image, scores_per_image, labels_per_image

                if self.use_nms:
                    keep = batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
                    box_pred_per_image = box_pred_per_image[keep]
                    scores_per_image = scores_per_image[keep]
                    labels_per_image = labels_per_image[keep]
                result = Instances(image_size)
                result.pred_boxes = Boxes(box_pred_per_image)
                result.scores = scores_per_image
                result.pred_classes = labels_per_image
                results.append(result)

        return results

    def preprocess_image(self, batched_inputs):
        """
        Normalize, pad and batch the input images.
        """
        images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs]
        images = ImageList.from_tensors(images, self.size_divisibility)

        images_whwh = list()
        for bi in batched_inputs:
            h, w = bi["image"].shape[-2:]
            images_whwh.append(torch.tensor([w, h, w, h], dtype=torch.float32, device=self.device))
        images_whwh = torch.stack(images_whwh)

        return images, images_whwh