gradio_diffbir.py 6.99 KB
Newer Older
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
1
2
3
4
5
6
7
8
9
10
11
12
from typing import List
import math
from argparse import ArgumentParser

import numpy as np
import torch
import einops
import pytorch_lightning as pl
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
from ldm.xformers_state import disable_xformers
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
14
15
16
17
18
19
20
21
22
23
24
25
26
from model.spaced_sampler import SpacedSampler
from model.cldm import ControlLDM
from utils.image import (
    wavelet_reconstruction, auto_resize, pad
)
from utils.common import instantiate_from_config, load_state_dict


parser = ArgumentParser()
parser.add_argument("--config", required=True, type=str)
parser.add_argument("--ckpt", type=str, required=True)
parser.add_argument("--reload_swinir", action="store_true")
parser.add_argument("--swinir_ckpt", type=str, default="")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
27
parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda"])
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
28
29
30
args = parser.parse_args()

# load model
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
31
32
if args.device == "cpu":
    disable_xformers()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
33
34
35
36
37
38
39
model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
# reload preprocess model if specified
if args.reload_swinir:
    print(f"reload swinir model from {args.swinir_ckpt}")
    load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
model.freeze()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
40
model.to(args.device)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# load sampler
sampler = SpacedSampler(model, var_type="fixed_small")


@torch.no_grad()
def process(
    control_img: Image.Image,
    num_samples: int,
    sr_scale: int,
    image_size: int,
    disable_preprocess_model: bool,
    strength: float,
    positive_prompt: str,
    negative_prompt: str,
    cond_scale: float,
    steps: int,
    use_color_fix: bool,
    keep_original_size: bool,
    seed: int
) -> List[np.ndarray]:
    print(
        f"control image shape={control_img.size}\n"
        f"num_samples={num_samples}, sr_scale={sr_scale}, image_size={image_size}\n"
        f"disable_preprocess_model={disable_preprocess_model}, strength={strength}\n"
        f"positive_prompt='{positive_prompt}', negative_prompt='{negative_prompt}'\n"
        f"prompt scale={cond_scale}, steps={steps}, use_color_fix={use_color_fix}\n"
        f"seed={seed}"
    )
    pl.seed_everything(seed)

    # prepare condition
    if sr_scale != 1:
        control_img = control_img.resize(
            tuple(math.ceil(x * sr_scale) for x in control_img.size),
            Image.BICUBIC
        )
    input_size = control_img.size
    control_img = auto_resize(control_img, image_size)
    h, w = control_img.height, control_img.width
    control_img = pad(np.array(control_img), scale=64) # HWC, RGB, [0, 255]
    control_imgs = [control_img] * num_samples
    control = torch.tensor(np.stack(control_imgs) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
    control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
    if not disable_preprocess_model:
        control = model.preprocess_model(control)
    height, width = control.size(-2), control.size(-1)
    cond = {
        "c_latent": [model.apply_condition_encoder(control)],
        "c_crossattn": [model.get_learned_conditioning([positive_prompt] * num_samples)]
    }
    uncond = {
        "c_latent": [model.apply_condition_encoder(control)],
        "c_crossattn": [model.get_learned_conditioning([negative_prompt] * num_samples)]
    }
    model.control_scales = [strength] * 13
    
    shape = (num_samples, 4, height // 8, width // 8)
    print(f"latent shape = {shape}")
    x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
    samples = sampler.sample(
        steps, shape, cond,
        unconditional_guidance_scale=cond_scale,
        unconditional_conditioning=uncond,
        cond_fn=None, x_T=x_T
    )
    x_samples = model.decode_first_stage(samples)
    x_samples = ((x_samples + 1) / 2).clamp(0, 1)
    
    # apply color correction
    if use_color_fix:
        x_samples = wavelet_reconstruction(x_samples, control)
    
    x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    preds = []
    for img in x_samples:
        if keep_original_size:
            # remove padding and resize to input size
            img = Image.fromarray(img[:h, :w, :]).resize(input_size, Image.LANCZOS)
            preds.append(np.array(img))
        else:
            # remove padding
            preds.append(img[:h, :w, :])
    return preds


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## DiffBIR")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source="upload", type="pil")
            run_button = gr.Button(label="Run")
            with gr.Accordion("Options", open=True):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                sr_scale = gr.Number(label="SR Scale", value=1)
                image_size = gr.Slider(label="Image size", minimum=256, maximum=768, value=512, step=64)
                positive_prompt = gr.Textbox(label="Positive Prompt", value="")
                # It's worth noting that if your positive prompt is short while the negative prompt 
                # is long, the positive prompt will lose its effectiveness.
                # Example (control strength = 0):
                # positive prompt: cat
                # negative prompt: longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
                # I take some experiments and find that sd_v2.1 will suffer from this problem while sd_v1.5 won't.
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
                )
                cond_scale = gr.Slider(label="Prompt Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
                disable_preprocess_model = gr.Checkbox(label="Disable Preprocess Model", value=False)
                use_color_fix = gr.Checkbox(label="Use Color Correction", value=True)
                keep_original_size = gr.Checkbox(label="Keep Original Size", value=True)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
        with gr.Column():
            result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery").style(grid=2, height="auto")
    inputs = [
        input_image,
        num_samples,
        sr_scale,
        image_size,
        disable_preprocess_model,
        strength,
        positive_prompt,
        negative_prompt,
        cond_scale,
        steps,
        use_color_fix,
        keep_original_size,
        seed
    ]
    run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])

block.launch(server_name='0.0.0.0')