README.md 13.7 KB
Newer Older
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
1
2
3
4
5
6
<p align="center">
    <img src="assets/logo.png" width="400">
</p>

## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
7
[Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
8

9
![visitors](https://visitor-badge.laobi.icu/badge?page_id=XPixelGroup/DiffBIR) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
10
11
12

[Xinqi Lin](https://0x3f3f3f3fun.github.io/)<sup>1,\*</sup>, [Jingwen He](https://github.com/hejingwenhejingwen)<sup>2,\*</sup>, [Ziyan Chen](https://orcid.org/0000-0001-6277-5635)<sup>2</sup>, [Zhaoyang Lyu](https://scholar.google.com.tw/citations?user=gkXFhbwAAAAJ&hl=en)<sup>2</sup>, [Ben Fei](https://scholar.google.com/citations?user=skQROj8AAAAJ&hl=zh-CN&oi=ao)<sup>2</sup>, [Bo Dai](http://daibo.info/)<sup>2</sup>, [Wanli Ouyang](https://wlouyang.github.io/)<sup>2</sup>, [Yu Qiao](http://mmlab.siat.ac.cn/yuqiao)<sup>2</sup>, [Chao Dong](http://xpixel.group/2010/01/20/chaodong.html)<sup>1,2</sup>

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
<sup>1</sup>Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences<br><sup>2</sup>Shanghai AI Laboratory
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
14
15
16
17
18
19
20
21
22
23

<p align="center">
    <img src="assets/architecture.png" style="border-radius: 15px">
</p>

:star:If DiffBIR is helpful for you, please help star this repo. Thanks!:hugs:

## :book:Table Of Contents

- [Visual Results On Real-world Images](#visual_results)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
24
25
- [Update](#update)
- [TODO](#todo)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
- [Installation](#installation)
- [Pretrained Models](#pretrained_models)
- [Quick Start (gradio demo)](#quick_start)
- [Inference](#inference)
- [Train](#train)

## <a name="visual_results"></a>:eyes:Visual Results On Real-world Images

<!-- <details close>
<summary>General Image Restoration</summary> -->
### General Image Restoration

[<img src="assets/visual_results/general6.png" height="223px"/>](https://imgsli.com/MTk5ODI3) [<img src="assets/visual_results/general7.png" height="223px"/>](https://imgsli.com/MTk5ODI4) [<img src="assets/visual_results/general4.png" height="223px"/>](https://imgsli.com/MTk5ODI1)

[<img src="assets/visual_results/general1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/general2.png" height="223px"/>](https://imgsli.com/MTk5ODIz)

[<img src="assets/visual_results/general3.png" height="223px"/>](https://imgsli.com/MTk5ODI0) [<img src="assets/visual_results/general5.png" height="223px"/>](https://imgsli.com/MjAxMjM0)

<!-- </details> -->

<!-- <details close> -->
<!-- <summary>Face Image Restoration</summary> -->
### Face Image Restoration

[<img src="assets/visual_results/face1.png" height="223px"/>](https://imgsli.com/MTk5ODI5) [<img src="assets/visual_results/face2.png" height="223px"/>](https://imgsli.com/MTk5ODMw) [<img src="assets/visual_results/face3.png" height="223px"/>](https://imgsli.com/MTk5ODMy)

[<img src="assets/visual_results/face4.png" height="223px"/>](https://imgsli.com/MTk5ODM0) [<img src="assets/visual_results/face5.png" height="223px"/>](https://imgsli.com/MTk5ODM1) [<img src="assets/visual_results/face6.png" height="223px"/>](https://imgsli.com/MTk5ODM2)

54
55
[<img src="assets/visual_results/whole_image1.png" height="410px"/>](https://imgsli.com/MjA0MzQw)

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
56
57
<!-- </details> -->

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
## <a name="update"></a>:new:Update

- **2023.08.30**: Repo is released.
- **2023.09.06**: Update [colab demo](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb). Thanks to [camenduru](https://github.com/camenduru)!:hugs:
- **2023.09.08**: Add support for restoring unaligned faces.
- **2023.09.12**: Upload inference code of latent image guidance and release [real47](inputs/real47) testset.

## <a name="todo"></a>:climbing:TODO

- [x] Release code and pretrained models:computer:.
- [x] Update links to paper and project page:link:.
- [x] Release real47 testset:minidisc:.
- [ ] Provide webui and reduce the memory usage of DiffBIR:fire::fire::fire:.
- [ ] Provide HuggingFace demo:notebook::fire::fire::fire:.
- [x] Upload inference code of latent image guidance:page_facing_up:.
- [ ] Improve the performance:superhero:.
- [ ] Add a patch-based sampling schedule:mag:.

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
76
## <a name="installation"></a>:gear:Installation
ziyannchen's avatar
ziyannchen committed
77
78
79
80
- **Python** >= 3.9
- **CUDA** >= 11.3
- **PyTorch** >= 1.12.1
- **xformers** == 0.0.16
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
81
82

```shell
ziyannchen's avatar
ziyannchen committed
83
84
85
86
# clone this repo
git clone https://github.com/XPixelGroup/DiffBIR.git
cd DiffBIR

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
87
88
89
# create a conda environment with python >= 3.9
conda create -n diffbir python=3.9
conda activate diffbir
ziyannchen's avatar
ziyannchen committed
90
91

conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
92
conda install xformers==0.0.16 -c xformers
ziyannchen's avatar
ziyannchen committed
93

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
94
# other dependencies
ziyannchen's avatar
ziyannchen committed
95
pip install -r requirements.txt
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
96
97
98
99
```

## <a name="pretrained_models"></a>:dna:Pretrained Models

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
100
101
102
103
104
105
| Model Name | Description | HuggingFace | BaiduNetdisk |
| :--------- | :---------- | :---------- | :---------- |
| general_swinir_v1.ckpt | Stage1 model (SwinIR) for general image restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) | [download](https://pan.baidu.com/s/1uvSvJgcoL_Knj0h22-9TvA?pwd=v3v6) (pwd: v3v6) |
| general_full_v1.ckpt | Full model for general image restoration. "Full" means it contains both the stage1 and stage2 model. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) | [download](https://pan.baidu.com/s/1gLvW1nvkJStdVAKROqaYaA?pwd=86zi) (pwd: 86zi) |
| face_swinir_v1.ckpt | Stage1 model (SwinIR) for face restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt) | [download](https://pan.baidu.com/s/1cnBBC8437BJiM3q6suaK8g?pwd=xk5u) (pwd: xk5u) |
| face_full_v1.ckpt | Full model for face restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt) | [download](https://pan.baidu.com/s/1pc04xvQybkynRfzK5Y8K0Q?pwd=ov8i) (pwd: ov8i) |
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
106
107
108

## <a name="quick_start"></a>:flight_departure:Quick Start

109
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/`, then run the following command to interact with the gradio website.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
110

111
```shell
ziyannchen's avatar
ziyannchen committed
112
python gradio_diffbir.py \
113
--ckpt weights/general_full_v1.ckpt \
ziyannchen's avatar
ziyannchen committed
114
115
--config configs/model/cldm.yaml \
--reload_swinir \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
116
117
--swinir_ckpt weights/general_swinir_v1.ckpt \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
118
119
120
121
122
123
124
125
126
127
128
129
```

<div align="center">
    <kbd><img src="assets/gradio.png"></img></kbd>
</div>

## <a name="inference"></a>:crossed_swords:Inference

### Full Pipeline (Remove Degradations & Refine Details)

#### General Image

130
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/` and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
131
132

```shell
ziyannchen's avatar
ziyannchen committed
133
python inference.py \
134
--input inputs/demo/general \
ziyannchen's avatar
ziyannchen committed
135
--config configs/model/cldm.yaml \
136
137
--ckpt weights/general_full_v1.ckpt \
--reload_swinir --swinir_ckpt weights/general_swinir_v1.ckpt \
ziyannchen's avatar
ziyannchen committed
138
139
140
141
--steps 50 \
--sr_scale 4 \
--image_size 512 \
--color_fix_type wavelet --resize_back \
142
--output results/demo/general \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
143
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
144
145
```

146
147
If you are confused about where the `reload_swinir` option came from, please refer to the [degradation details](#degradation-details).

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
148
#### Face Image
149
Download [face_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt) to `weights/` and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
150

ziyannchen's avatar
ziyannchen committed
151
```shell
152
153
# for aligned face inputs
python inference_face.py \
ziyannchen's avatar
ziyannchen committed
154
--config configs/model/cldm.yaml \
155
--ckpt weights/face_full_v1.ckpt \
156
--input inputs/demo/face/aligned \
157
158
159
160
--steps 50 \
--sr_scale 1 \
--image_size 512 \
--color_fix_type wavelet \
161
--output results/demo/face/aligned --resize_back \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
162
163
--has_aligned \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
164

165
# for unaligned face inputs
ziyannchen's avatar
ziyannchen committed
166
167
168
python inference_face.py \
--config configs/model/cldm.yaml \
--ckpt weights/face_full_v1.ckpt \
169
--input inputs/demo/face/whole_img \
ziyannchen's avatar
ziyannchen committed
170
171
172
173
--steps 50 \
--sr_scale 1 \
--image_size 512 \
--color_fix_type wavelet \
174
--output results/demo/face/whole_img --resize_back \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
175
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
176
177
```

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
### Latent Image Guidance (Quality-fidelity trade-off)

Latent image guidance is used to achieve a trade-off bwtween quality and fidelity. We default to closing it since we prefer quality rather than fidelity. Here is an example:

```shell
python inference.py \
--input inputs/demo/general \
--config configs/model/cldm.yaml \
--ckpt weights/general_full_v1.ckpt \
--reload_swinir --swinir_ckpt weights/general_swinir_v1.ckpt \
--steps 50 \
--sr_scale 4 \
--image_size 512 \
--color_fix_type wavelet --resize_back \
--output results/demo/general \
--device cuda \
--use_guidance --g_scale 400 --g_t_start 200
```

You will see that the results become more smooth.

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
199
200
### Only Stage1 Model (Remove Degradations)

201
Download [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt), [face_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt) for general, face image respectively, and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
202
203

```shell
ziyannchen's avatar
ziyannchen committed
204
205
206
207
208
209
python scripts/inference_stage1.py \
--config configs/model/swinir.yaml \
--ckpt [swinir_ckpt_path] \
--input [lq_dir] \
--sr_scale 1 --image_size 512 \
--output [output_dir_path]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
210
211
212
213
214
215
216
217
218
219
```

### Only Stage2 Model (Refine Details)

Since the proposed two-stage pipeline is very flexible, you can utilize other awesome models to remove degradations instead of SwinIR and then leverage the Stable Diffusion to refine details.

```shell
# step1: Use other models to remove degradations and save results in [img_dir_path].

# step2: Refine details of step1 outputs.
ziyannchen's avatar
ziyannchen committed
220
221
222
223
224
225
226
python inference.py \
--config configs/model/cldm.yaml \
--ckpt [full_ckpt_path] \
--steps 50 --sr_scale 1 --image_size 512 \
--input [img_dir_path] \
--color_fix_type wavelet --resize_back \
--output [output_dir_path] \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
227
228
--disable_preprocess_model \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
229
230
```

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
231
## <a name="train"></a>:stars:Train
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
232
233
234
235
236
237
238
239
240
241
242
243

### Degradation Details

For general image restoration, we first train both the stage1 and stage2 model under codeformer degradation to enhance the generative capacity of the stage2 model. In order to improve the ability for degradation removal, we train another stage1 model under Real-ESRGAN degradation and utilize it during inference.

For face image restoration, we adopt the degradation model used in [DifFace](https://github.com/zsyOAOA/DifFace/blob/master/configs/training/swinir_ffhq512.yaml) for training and directly utilize the SwinIR model released by them as our stage1 model.

### Data Preparation

1. Generate file list of training set and validation set.

    ```shell
ziyannchen's avatar
ziyannchen committed
244
245
246
247
248
    python scripts/make_file_list.py \
    --img_folder [hq_dir_path] \
    --val_size [validation_set_size] \
    --save_folder [save_dir_path] \
    --follow_links
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    ```
    
    This script will collect all image files in `img_folder` and split them into training set and validation set automatically. You will get two file lists in `save_folder`, each line in a file list contains an absolute path of an image file:
    
    ```
    save_folder
    ├── train.list # training file list
    └── val.list   # validation file list
    ```

2. Configure training set and validation set.

    For general image restoration, fill in the following configuration files with appropriate values.

    - [training set](configs/dataset/general_deg_codeformer_train.yaml) and [validation set](configs/dataset/general_deg_codeformer_val.yaml) for **CodeFormer** degradation.
    - [training set](configs/dataset/general_deg_realesrgan_train.yaml) and [validation set](configs/dataset/general_deg_realesrgan_val.yaml) for **Real-ESRGAN** degradation.

    For face image restoration, fill in the face [training set](configs/dataset/face_train.yaml) and [validation set](configs/dataset/face_val.yaml) configuration files with appropriate values.

### Train Stage1 Model

1. Configure training-related information.

    Fill in the configuration file of [training](configs/train_swinir.yaml) with appropriate values.

2. Start training.

    ```shell
    python train.py --config [training_config_path]
    ```

    :bulb::Checkpoints of SwinIR will be used in training stage2 model.

### Train Stage2 Model

1. Download pretrained [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) to provide generative capabilities.

    ```shell
    wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate
    ```

2. Create the initial model weights.

    ```shell
ziyannchen's avatar
ziyannchen committed
293
294
295
296
297
    python scripts/make_stage2_init_weight.py \
    --cldm_config configs/model/cldm.yaml \
    --sd_weight [sd_v2.1_ckpt_path] \
    --swinir_weight [swinir_ckpt_path] \
    --output [init_weight_output_path]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    ```

    You will see some [outputs](assets/init_weight_outputs.txt) which show the weight initialization.

3. Configure training-related information.

    Fill in the configuration file of [training](configs/train_cldm.yaml) with appropriate values.

4. Start training.

    ```shell
    python train.py --config [training_config_path]
    ```

## Citation

Please cite us if our work is useful for your research.

```
@article{2023diffbir,
  author    = {Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao, Chao Dong},
  title     = {DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior},
  journal   = {arxiv},
  year      = {2023},
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Acknowledgement

This project is based on [ControlNet](https://github.com/lllyasviel/ControlNet) and [BasicSR](https://github.com/XPixelGroup/BasicSR). Thanks for their awesome work.

## Contact

If you have any questions, please feel free to contact with me at linxinqi@tju.edu.cn.