misc.py 5.42 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from typing import List, Optional
import torch
from torch.functional import Tensor
from torchvision.ops.boxes import box_area
import torch.distributed as dist


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


@torch.no_grad()
def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    if target.numel() == 0:
        return [torch.zeros([], device=output.device)]
    if target.ndim == 2:
        assert output.ndim == 3
        output = output.mean(1)
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, -1)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(-1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=-1)


def box_xyxy_to_cxcywh(x):
    x0, y0, x1, y1 = x.unbind(-1)
    b = [(x0 + x1) / 2, (y0 + y1) / 2,
         (x1 - x0), (y1 - y0)]
    return torch.stack(b, dim=-1)


# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / union
    return iou, union


def generalized_box_iou(boxes1, boxes2):
    """
    Generalized IoU from https://giou.stanford.edu/
    The boxes should be in [x0, y0, x1, y1] format
    Returns a [N, M] pairwise matrix, where N = len(boxes1)
    and M = len(boxes2)
    """
    # degenerate boxes gives inf / nan results
    # so do an early check
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
    iou, union = box_iou(boxes1, boxes2)

    lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    area = wh[:, :, 0] * wh[:, :, 1]

    return iou - (area - union) / area


def masks_to_boxes(masks):
    """Compute the bounding boxes around the provided masks
    The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
    Returns a [N, 4] tensors, with the boxes in xyxy format
    """
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device)

    h, w = masks.shape[-2:]

    y = torch.arange(0, h, dtype=torch.float)
    x = torch.arange(0, w, dtype=torch.float)
    y, x = torch.meshgrid(y, x)

    x_mask = (masks * x.unsqueeze(0))
    x_max = x_mask.flatten(1).max(-1)[0]
    x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]

    y_mask = (masks * y.unsqueeze(0))
    y_max = y_mask.flatten(1).max(-1)[0]
    y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]

    return torch.stack([x_min, y_min, x_max, y_max], 1)

def inverse_sigmoid(x, eps=1e-5):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1/x2)

def sigmoid_offset(x, offset=True):
    # modified sigmoid for range [-0.5, 1.5]
    if offset:
        return x.sigmoid() * 2 - 0.5
    else:
        return x.sigmoid()

def inverse_sigmoid_offset(x, eps=1e-5, offset=True):
    if offset:
        x = (x + 0.5) / 2.0
    return inverse_sigmoid(x, eps)

def _max_by_axis(the_list):
    # type: (List[List[int]]) -> List[int]
    maxes = the_list[0]
    for sublist in the_list[1:]:
        for index, item in enumerate(sublist):
            maxes[index] = max(maxes[index], item)
    return maxes


def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
    # make this more general
    if tensor_list[0].ndim == 3:
        # make it support different-sized images
        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
        # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
        batch_shape = [len(tensor_list)] + max_size
        b, c, h, w = batch_shape
        dtype = tensor_list[0].dtype
        device = tensor_list[0].device
        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
        mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
        for img, pad_img, m in zip(tensor_list, tensor, mask):
            pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
            m[: img.shape[1], :img.shape[2]] = False
    else:
        raise ValueError('not supported')
    return NestedTensor(tensor, mask)


class NestedTensor(object):
    def __init__(self, tensors, mask: Optional[Tensor]):
        self.tensors = tensors
        self.mask = mask

    def to(self, device):
        # type: (Device) -> NestedTensor # noqa
        cast_tensor = self.tensors.to(device)
        mask = self.mask
        if mask is not None:
            assert mask is not None
            cast_mask = mask.to(device)
        else:
            cast_mask = None
        return NestedTensor(cast_tensor, cast_mask)

    def decompose(self):
        return self.tensors, self.mask

    def __repr__(self):
        return str(self.tensors)