vitae_v2.py 10.5 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from functools import partial
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_
import numpy as np
import torch.utils.checkpoint as checkpoint
from .NormalCell import NormalCell
from .ReductionCell import ReductionCell

from detectron2.modeling.backbone import Backbone
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.layers import ShapeSpec
import os.path as osp


class PatchEmbedding(nn.Module):
    def __init__(self, inter_channel=32, out_channels=48, img_size=None):
        self.img_size = img_size
        self.inter_channel = inter_channel
        self.out_channel = out_channels
        super().__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, inter_channel, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(inter_channel),
            nn.ReLU(inplace=True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(inter_channel, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )
        self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, x, size):
        x = self.conv3(self.conv2(self.conv1(x)))
        b, c, h, w = x.shape
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        return x, (h, w)

    def flops(self, ) -> float:
        flops = 0
        flops += 3 * self.inter_channel * self.img_size[0] * self.img_size[1] // 4 * 9
        flops += self.img_size[0] * self.img_size[1] // 4 * self.inter_channel
        flops += self.inter_channel * self.out_channel * self.img_size[0] * self.img_size[1] // 16 * 9
        flops += self.img_size[0] * self.img_size[1] // 16 * self.out_channel
        flops += self.out_channel * self.out_channel * self.img_size[0] * self.img_size[1] // 16
        return flops


class BasicLayer(nn.Module):
    def __init__(self, img_size=224, in_chans=3, embed_dims=64, token_dims=64, downsample_ratios=4, kernel_size=7, RC_heads=1, NC_heads=6, dilations=[1, 2, 3, 4],
                RC_op='cat', RC_tokens_type='performer', NC_tokens_type='transformer', RC_group=1, NC_group=64, NC_depth=2, dpr=0.1, mlp_ratio=4., qkv_bias=True,
                qk_scale=None, drop=0, attn_drop=0., norm_layer=nn.LayerNorm, class_token=False, gamma=False, init_values=1e-4, SE=False, window_size=7,
                use_checkpoint=False):
        super().__init__()
        self.img_size = img_size
        self.in_chans = in_chans
        self.embed_dims = embed_dims
        self.token_dims = token_dims
        self.downsample_ratios = downsample_ratios
        self.out_size = self.img_size // self.downsample_ratios
        self.RC_kernel_size = kernel_size
        self.RC_heads = RC_heads
        self.NC_heads = NC_heads
        self.dilations = dilations
        self.RC_op = RC_op
        self.RC_tokens_type = RC_tokens_type
        self.RC_group = RC_group
        self.NC_group = NC_group
        self.NC_depth = NC_depth
        self.use_checkpoint = use_checkpoint
        if RC_tokens_type == 'stem':
            self.RC = PatchEmbedding(inter_channel=token_dims//2, out_channels=token_dims, img_size=img_size)
        elif downsample_ratios > 1:
            self.RC = ReductionCell(img_size, in_chans, embed_dims, token_dims, downsample_ratios, kernel_size,
                            RC_heads, dilations, op=RC_op, tokens_type=RC_tokens_type, group=RC_group, gamma=gamma, init_values=init_values, SE=SE)
        else:
            self.RC = nn.Identity()
        self.NC = nn.ModuleList([
            NormalCell(token_dims, NC_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
                       drop_path=dpr[i] if isinstance(dpr, list) else dpr, norm_layer=norm_layer, class_token=class_token, group=NC_group, tokens_type=NC_tokens_type,
                       gamma=gamma, init_values=init_values, SE=SE, img_size=img_size // downsample_ratios, window_size=window_size, shift_size=0)
        for i in range(NC_depth)])

    def forward(self, x, size):
        h, w = size
        x, (h, w) = self.RC(x, (h, w))
        for nc in self.NC:
            nc.H = h
            nc.W = w
            if self.use_checkpoint:
                x = checkpoint.checkpoint(nc, x)
            else:
                x = nc(x)
        return x, (h, w)


class ViTAEv2(Backbone):
    def __init__(self,
                img_size=224,
                in_chans=3,
                embed_dims=64,
                token_dims=64,
                downsample_ratios=[4, 2, 2, 2],
                kernel_size=[7, 3, 3, 3],
                RC_heads=[1, 1, 1, 1],
                NC_heads=4,
                dilations=[[1, 2, 3, 4], [1, 2, 3], [1, 2], [1, 2]],
                RC_op='cat',
                RC_tokens_type='window',
                NC_tokens_type='transformer',
                RC_group=[1, 1, 1, 1],
                NC_group=[1, 32, 64, 64],
                NC_depth=[2, 2, 6, 2],
                mlp_ratio=4.,
                qkv_bias=True,
                qk_scale=None,
                drop_rate=0.,
                attn_drop_rate=0.,
                drop_path_rate=0.,
                norm_layer=partial(nn.LayerNorm, eps=1e-6),
                stages=4,
                window_size=7,
                out_indices=(0, 1, 2, 3),
                frozen_stages=-1,
                use_checkpoint=False,
                load_ema=True):
        super().__init__()

        self.stages = stages
        self.load_ema = load_ema
        repeatOrNot = (lambda x, y, z=list: x if isinstance(x, z) else [x for _ in range(y)])
        self.embed_dims = repeatOrNot(embed_dims, stages)
        self.tokens_dims = token_dims if isinstance(token_dims, list) else [token_dims * (2 ** i) for i in range(stages)]
        self.downsample_ratios = repeatOrNot(downsample_ratios, stages)
        self.kernel_size = repeatOrNot(kernel_size, stages)
        self.RC_heads = repeatOrNot(RC_heads, stages)
        self.NC_heads = repeatOrNot(NC_heads, stages)
        self.dilaions = repeatOrNot(dilations, stages)
        self.RC_op = repeatOrNot(RC_op, stages)
        self.RC_tokens_type = repeatOrNot(RC_tokens_type, stages)
        self.NC_tokens_type = repeatOrNot(NC_tokens_type, stages)
        self.RC_group = repeatOrNot(RC_group, stages)
        self.NC_group = repeatOrNot(NC_group, stages)
        self.NC_depth = repeatOrNot(NC_depth, stages)
        self.mlp_ratio = repeatOrNot(mlp_ratio, stages)
        self.qkv_bias = repeatOrNot(qkv_bias, stages)
        self.qk_scale = repeatOrNot(qk_scale, stages)
        self.drop = repeatOrNot(drop_rate, stages)
        self.attn_drop = repeatOrNot(attn_drop_rate, stages)
        self.norm_layer = repeatOrNot(norm_layer, stages)
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.use_checkpoint = use_checkpoint

        depth = np.sum(self.NC_depth)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        Layers = []
        for i in range(stages):
            startDpr = 0 if i==0 else self.NC_depth[i - 1]
            Layers.append(
                BasicLayer(img_size, in_chans, self.embed_dims[i], self.tokens_dims[i], self.downsample_ratios[i],
                self.kernel_size[i], self.RC_heads[i], self.NC_heads[i], self.dilaions[i], self.RC_op[i],
                self.RC_tokens_type[i], self.NC_tokens_type[i], self.RC_group[i], self.NC_group[i], self.NC_depth[i], dpr[startDpr:self.NC_depth[i]+startDpr],
                mlp_ratio=self.mlp_ratio[i], qkv_bias=self.qkv_bias[i], qk_scale=self.qk_scale[i], drop=self.drop[i], attn_drop=self.attn_drop[i],
                norm_layer=self.norm_layer[i], window_size=window_size, use_checkpoint=use_checkpoint)
            )
            img_size = img_size // self.downsample_ratios[i]
            in_chans = self.tokens_dims[i]

        self.layers = nn.ModuleList(Layers)
        self.num_layers = len(Layers)

        self._freeze_stages()

        self._out_features = ["stage3", "stage4", "stage5"]
        self.init_weights()

    def _freeze_stages(self):

        if self.frozen_stages > 0:
            self.pos_drop.eval()
            for i in range(0, self.frozen_stages):
                m = self.layers[i]
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def init_weights(self):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm) or isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        self.apply(_init_weights)

    def forward(self, x):
        """Forward function."""
        outs = {}
        b, _, h, w = x.shape
        for idx, layer in enumerate(self.layers):
            x, (h, w) = layer(x, (h, w))

            stage_name = "stage" + str(idx + 2)
            if stage_name in self._out_features:
                outs[stage_name] = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous()
        return outs

    def output_shape(self):
        return {
            "stage3": ShapeSpec(channels=128, stride=8),
            "stage4": ShapeSpec(channels=256, stride=16),
            "stage5": ShapeSpec(channels=512, stride=32),
        }


@BACKBONE_REGISTRY.register()
def build_vitaev2_backbone(cfg, input_shape):
    vitaev2_type = cfg.MODEL.ViTAEv2.TYPE

    if vitaev2_type == 'vitaev2_s':
        backbone = ViTAEv2(
            in_chans=3,
            RC_tokens_type=['window', 'window', 'transformer', 'transformer'],
            NC_tokens_type=['window', 'window', 'transformer', 'transformer'],
            embed_dims=[64, 64, 128, 256],
            token_dims=[64, 128, 256, 512],
            downsample_ratios=[4, 2, 2, 2],
            NC_depth=[2, 2, 8, 2],
            NC_heads=[1, 2, 4, 8],
            RC_heads=[1, 1, 2, 4],
            mlp_ratio=4.,
            NC_group=[1, 32, 64, 128],
            RC_group=[1, 16, 32, 64],
            use_checkpoint=True,
            drop_rate=0.,
            attn_drop_rate=0.,
            window_size=7,
            drop_path_rate=cfg.MODEL.ViTAEv2.DROP_PATH_RATE,
        )
    else:
        raise NotImplementedError

    return backbone